The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the “Problem Set 2” assignmenet on Moodle.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.library(datasets)
data=anscombe
data
## x1 x2 x3 x4 y1 y2 y3 y4
## 1 10 10 10 8 8.04 9.14 7.46 6.58
## 2 8 8 8 8 6.95 8.14 6.77 5.76
## 3 13 13 13 8 7.58 8.74 12.74 7.71
## 4 9 9 9 8 8.81 8.77 7.11 8.84
## 5 11 11 11 8 8.33 9.26 7.81 8.47
## 6 14 14 14 8 9.96 8.10 8.84 7.04
## 7 6 6 6 8 7.24 6.13 6.08 5.25
## 8 4 4 4 19 4.26 3.10 5.39 12.50
## 9 12 12 12 8 10.84 9.13 8.15 5.56
## 10 7 7 7 8 4.82 7.26 6.42 7.91
## 11 5 5 5 8 5.68 4.74 5.73 6.89
fBasics() package!)library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
library(timeDate)
library(timeSeries)
basicStats(data)
## x1 x2 x3 x4 y1 y2
## nobs 11.000000 11.000000 11.000000 11.000000 11.000000 11.000000
## NAs 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## Minimum 4.000000 4.000000 4.000000 8.000000 4.260000 3.100000
## Maximum 14.000000 14.000000 14.000000 19.000000 10.840000 9.260000
## 1. Quartile 6.500000 6.500000 6.500000 8.000000 6.315000 6.695000
## 3. Quartile 11.500000 11.500000 11.500000 8.000000 8.570000 8.950000
## Mean 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909
## Median 9.000000 9.000000 9.000000 8.000000 7.580000 8.140000
## Sum 99.000000 99.000000 99.000000 99.000000 82.510000 82.510000
## SE Mean 1.000000 1.000000 1.000000 1.000000 0.612541 0.612568
## LCL Mean 6.771861 6.771861 6.771861 6.771861 6.136083 6.136024
## UCL Mean 11.228139 11.228139 11.228139 11.228139 8.865735 8.865795
## Variance 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629
## Stdev 3.316625 3.316625 3.316625 3.316625 2.031568 2.031657
## Skewness 0.000000 0.000000 0.000000 2.466911 -0.048374 -0.978693
## Kurtosis -1.528926 -1.528926 -1.528926 4.520661 -1.199123 -0.514319
## y3 y4
## nobs 11.000000 11.000000
## NAs 0.000000 0.000000
## Minimum 5.390000 5.250000
## Maximum 12.740000 12.500000
## 1. Quartile 6.250000 6.170000
## 3. Quartile 7.980000 8.190000
## Mean 7.500000 7.500909
## Median 7.110000 7.040000
## Sum 82.500000 82.510000
## SE Mean 0.612196 0.612242
## LCL Mean 6.135943 6.136748
## UCL Mean 8.864057 8.865070
## Variance 4.122620 4.123249
## Stdev 2.030424 2.030579
## Skewness 1.380120 1.120774
## Kurtosis 1.240044 0.628751
cor(data$x1, data$y1)
## [1] 0.8164205
cor(data$x2, data$y2)
## [1] 0.8162365
cor(data$x3, data$y3)
## [1] 0.8162867
cor(data$x4, data$y4)
## [1] 0.8165214
plot(data$x1, data$y1)
plot(data$x2, data$y2)
plot(data$x3, data$y3)
plot(data$x4, data$y4)
par(mfrow=c(2,2))
plot(data$x1, data$y1, pch=19)
plot(data$x2, data$y2, pch=19)
plot(data$x3, data$y3, pch=19)
plot(data$x4, data$y4, pch=19)
lm() function.mod1=lm(data$y1~data$x1)
summary(mod1)
##
## Call:
## lm(formula = data$y1 ~ data$x1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.92127 -0.45577 -0.04136 0.70941 1.83882
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0001 1.1247 2.667 0.02573 *
## data$x1 0.5001 0.1179 4.241 0.00217 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
mod2=lm(data$y2~data$x2)
summary(mod2)
##
## Call:
## lm(formula = data$y2 ~ data$x2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9009 -0.7609 0.1291 0.9491 1.2691
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.001 1.125 2.667 0.02576 *
## data$x2 0.500 0.118 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
mod3=lm(data$y3~data$x3)
summary(mod3)
##
## Call:
## lm(formula = data$y3 ~ data$x3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1586 -0.6146 -0.2303 0.1540 3.2411
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0025 1.1245 2.670 0.02562 *
## data$x3 0.4997 0.1179 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
mod4=lm(data$y4~data$x4)
summary(mod4)
##
## Call:
## lm(formula = data$y4 ~ data$x4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.751 -0.831 0.000 0.809 1.839
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0017 1.1239 2.671 0.02559 *
## data$x4 0.4999 0.1178 4.243 0.00216 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297
## F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
par(mfrow=c(2,2))
plot(data$x1, data$y1, pch=19)
abline(mod1)
plot(data$x2, data$y2, pch=19)
abline(mod2)
plot(data$x3, data$y3, pch=19)
abline(mod3)
plot(data$x4, data$y4, pch=19)
abline(mod4)
anova(mod1)
Analysis of Variance Table
Response: data\(y1 Df Sum Sq Mean Sq F value Pr(>F) data\)x1 1 27.510 27.5100 17.99 0.00217 ** Residuals 9 13.763 1.5292
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(mod2)
Analysis of Variance Table
Response: data\(y2 Df Sum Sq Mean Sq F value Pr(>F) data\)x2 1 27.500 27.5000 17.966 0.002179 ** Residuals 9 13.776 1.5307
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(mod3)
Analysis of Variance Table
Response: data\(y3 Df Sum Sq Mean Sq F value Pr(>F) data\)x3 1 27.470 27.4700 17.972 0.002176 ** Residuals 9 13.756 1.5285
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(mod4)
Analysis of Variance Table
Response: data\(y4 Df Sum Sq Mean Sq F value Pr(>F) data\)x4 1 27.490 27.4900 18.003 0.002165 ** Residuals 9 13.742 1.5269
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Data visualization plays a critical part in investigating data and determining the underlying relationship.
When reviewing the calculated correlation between the pairs, the results seem very similar to each other by scale. Though, from the correlation matrix, it is clear to see each pair is of very different pattern.
Same problem happens when reviewing the linear relationship results. All F-test results seem to be very significant, though when fitting the line together with the scatter plots, it is clear that some of the relationships are not linear.
This marks the importance of data visualization, by showing the most straighforward yet convenient way of evaluating the data, together with the mathematical value results.