01/10, 2018
¿Podemos explicar o predecir la eficiencia de combustible (mpg) a partir de los caballos de fuerza (hp) de un Vehículo?
set.seed(2018) index <- sample(1:nrow(mtcars), size = round(nrow(mtcars)/2)) Train <- mtcars[index, ] Test <- mtcars[-index, ]
Modelo que quiero usar
\[mpg = \beta_1 hp + \beta_2 hp^2 + c\]
Modelo <- lm(mpg ~ hp + I(hp^2), data = Train)
glance(Modelo)
r.squared | p.value | df | |
---|---|---|---|
value | 0.7736367 | 6.4e-05 | 3 |
Train$Pred <- predict(Modelo, Train)
hp | mpg | Pred | resid |
---|---|---|---|
123 | 17.8 | 20.35267 | 2.5526730 |
205 | 10.4 | 12.23662 | 1.8366218 |
110 | 21.0 | 22.36907 | 1.3690700 |
105 | 18.1 | 23.19778 | 5.0977842 |
180 | 15.2 | 13.86906 | -1.3309407 |
95 | 22.8 | 24.94384 | 2.1438410 |
215 | 10.4 | 11.79045 | 1.3904461 |
110 | 21.4 | 22.36907 | 0.9690700 |
245 | 13.3 | 11.16094 | -2.1390551 |
180 | 17.3 | 13.86906 | -3.4309407 |
91 | 26.0 | 25.67535 | -0.3246484 |
113 | 30.4 | 21.88602 | -8.5139781 |
65 | 33.9 | 30.89104 | -3.0089627 |
150 | 15.2 | 16.80289 | 1.6028950 |
335 | 15.0 | 15.65368 | 0.6536754 |
109 | 21.4 | 22.53245 | 1.1324494 |
library(caret) Test$Pred <- predict(Modelo, Test) postResample(pred = Test$Pred, obs = Test$mpg)
## RMSE Rsquared MAE ## 3.6939878 0.8355489 3.3326321
hp | mpg | Pred | resid |
---|---|---|---|
110 | 21.0 | 22.36907 | 1.369070 |
93 | 22.8 | 25.30723 | 2.507233 |
175 | 18.7 | 14.28417 | -4.415825 |
245 | 14.3 | 11.16094 | -3.139055 |
62 | 24.4 | 31.54425 | 7.144252 |
123 | 19.2 | 20.35267 | 1.152673 |
180 | 16.4 | 13.86906 | -2.530941 |
230 | 14.7 | 11.34275 | -3.357247 |
66 | 32.4 | 30.67566 | -1.724337 |
52 | 30.4 | 33.79844 | 3.398444 |
97 | 21.5 | 24.58518 | 3.085176 |
150 | 15.5 | 16.80289 | 1.302895 |
175 | 19.2 | 14.28417 | -4.915825 |
66 | 27.3 | 30.67566 | 3.375663 |
264 | 15.8 | 11.31235 | -4.487653 |
175 | 19.7 | 14.28417 | -5.415825 |
\[mpg = \beta_1 hp + \beta_2 hp^2 + ... + \beta_12 hp^{12} c\]
\[AIC = 2k - \ln(L)\]
\[AICc = AIC + \frac{2k^2 + 2k}{n-k-1}\]
AICc
en MuMInlibrary(MuMIn) Modelo <- lm(mpg ~ hp + I(hp^2), data = Train) AICc(Modelo)
## [1] 92.77244
Tomando la base de datos mtcars
explora la relacion entre AICc, \(R^2\) Exploratorio y \(R^2\) Predictivo.
Para eso genera un data frame con las siguientes columnas:
Predicción | Explicación | |
---|---|---|
Relación x e y | Asociación | Causalidad |
Relación función modelos | Datos | Teoria |
Visión | Futura | Retrospectiva |
Varianza | Maximizar predicción | Minimizar sesgo |