Julian Flowers: Public Health England
27/09/2018
## This may take a few moments... On 01/10/2018 Fingertips consisted of 54 profiles, made up of 4115 indicators and 1769 distinct indicators.
fingertips_data
function## IndicatorID IndicatorName ParentCode ParentName AreaCode
## 1 90366 Life expectancy at birth <NA> <NA> E92000001
## 2 90366 Life expectancy at birth <NA> <NA> E92000001
## 3 90366 Life expectancy at birth E92000001 England E12000001
## 4 90366 Life expectancy at birth E92000001 England E12000002
## 5 90366 Life expectancy at birth E92000001 England E12000003
## 6 90366 Life expectancy at birth E92000001 England E12000004
## AreaName AreaType Sex Age CategoryType
## 1 England Country Male All ages <NA>
## 2 England Country Female All ages <NA>
## 3 North East region Region Male All ages <NA>
## 4 North West region Region Male All ages <NA>
## 5 Yorkshire and the Humber region Region Male All ages <NA>
## 6 East Midlands region Region Male All ages <NA>
## Category Timeperiod Value LowerCI95.0limit UpperCI95.0limit
## 1 <NA> 2000 - 02 NA NA NA
## 2 <NA> 2000 - 02 NA NA NA
## 3 <NA> 2000 - 02 NA NA NA
## 4 <NA> 2000 - 02 NA NA NA
## 5 <NA> 2000 - 02 NA NA NA
## 6 <NA> 2000 - 02 NA NA NA
## LowerCI99.8limit UpperCI99.8limit Count Denominator
## 1 NA NA NA NA
## 2 NA NA NA NA
## 3 NA NA NA NA
## 4 NA NA NA NA
## 5 NA NA NA NA
## 6 NA NA NA NA
## Valuenote RecentTrend
## 1 Aggregated from all known lower geography values <NA>
## 2 Aggregated from all known lower geography values <NA>
## 3 Aggregated from all known lower geography values <NA>
## 4 Aggregated from all known lower geography values <NA>
## 5 Aggregated from all known lower geography values <NA>
## 6 Aggregated from all known lower geography values <NA>
## ComparedtoEnglandvalueorpercentiles ComparedtoRegionvalueorpercentiles
## 1 Not compared Not compared
## 2 Not compared Not compared
## 3 Not compared Not compared
## 4 Not compared Not compared
## 5 Not compared Not compared
## 6 Not compared Not compared
## TimeperiodSortable Newdata Comparedtogoal
## 1 20000000 <NA> <NA>
## 2 20000000 <NA> <NA>
## 3 20000000 <NA> <NA>
## 4 20000000 <NA> <NA>
## 5 20000000 <NA> <NA>
## 6 20000000 <NA> <NA>
fingertips_redred
## # A tibble: 6 x 26
## # Groups: IndicatorID, Sex, Age, CategoryType, Category [2]
## IndicatorID IndicatorName ParentCode ParentName AreaCode AreaName
## <int> <chr> <chr> <chr> <chr> <chr>
## 1 93085 Smoking stat… E12000009 South Wes… E100000… Devon
## 2 20201 Breastfeedin… E92000001 England E120000… East Mi…
## 3 20201 Breastfeedin… E12000001 North Eas… E060000… Hartlep…
## 4 20201 Breastfeedin… E12000001 North Eas… E060000… Stockto…
## 5 20201 Breastfeedin… E12000004 East Midl… E060000… Derby
## 6 20201 Breastfeedin… E12000006 East of E… E060000… Peterbo…
## # ... with 20 more variables: AreaType <chr>, Sex <chr>, Age <chr>,
## # CategoryType <chr>, Category <chr>, Timeperiod <chr>, Value <dbl>,
## # LowerCI95.0limit <dbl>, UpperCI95.0limit <dbl>,
## # LowerCI99.8limit <dbl>, UpperCI99.8limit <dbl>, Count <dbl>,
## # Denominator <dbl>, Valuenote <chr>, RecentTrend <chr>,
## # ComparedtoEnglandvalueorpercentiles <chr>,
## # ComparedtoRegionvalueorpercentiles <chr>, TimeperiodSortable <int>,
## # Newdata <chr>, Comparedtogoal <chr>
performance %>%
ggplot(aes(IndicatorName, forcats::fct_rev(AreaName))) +
geom_tile(fill = "red") +
scale_x_discrete(position = "top") +
theme(axis.text.x = element_text(angle = 90, hjust = 0),
axis.text = element_text(size = rel(.5))) +
labs(x= "", y = "")
## AreaCode IMDscore decile
## 1 E06000001 33.178 2
## 2 E06000002 40.216 1
## 3 E06000003 28.567 3
## 4 E06000004 24.625 5
## 5 E06000005 23.639 5
## 6 E06000006 31.943 2
## 7 E06000007 19.312 7
## 8 E06000008 34.189 1
## 9 E06000009 41.997 1
## 10 E06000010 41.235 1
## 11 E06000011 15.792 8
## 12 E06000012 30.898 2
## 13 E06000013 21.363 6
## 14 E06000014 12.219 9
## 15 E06000015 27.790 3
## 16 E06000016 33.065 2
## 17 E06000017 9.621 10
## 18 E06000018 36.927 1
## 19 E06000019 19.737 7
## 20 E06000020 24.852 5
## 21 E06000021 34.360 1
## 22 E06000022 12.094 10
## 23 E06000023 27.161 4
## 24 E06000024 15.783 8
## 25 E06000025 11.358 10
## 26 E06000026 26.643 4
## 27 E06000027 28.788 3
## 28 E06000028 21.847 6
## 29 E06000029 15.219 8
## 30 E06000030 17.857 8
## 31 E06000031 27.659 4
## 32 E06000032 27.577 4
## 33 E06000033 24.516 5
## 34 E06000034 21.603 6
## 35 E06000035 22.332 6
## 36 E06000036 10.462 10
## 37 E06000037 10.242 10
## 38 E06000038 19.319 7
## 39 E06000039 22.873 6
## 40 E06000040 8.857 10
## 41 E06000041 5.652 10
## 42 E06000042 18.029 7
## 43 E06000043 23.441 5
## 44 E06000044 27.054 4
## 45 E06000045 26.878 4
## 46 E06000046 23.087 5
## 47 E06000047 25.741 4
## 48 E06000049 14.132 9
## 49 E06000050 18.086 7
## 50 E06000051 16.689 8
## 51 E06000052 23.833 5
## 52 E06000053 12.013 10
## 53 E06000054 13.466 9
## 54 E06000055 19.238 7
## 55 E06000056 12.201 10
## 56 E06000057 20.525 6
## 57 E08000001 28.420 3
## 58 E08000002 21.769 6
## 59 E08000003 40.512 1
## 60 E08000004 30.291 2
## 61 E08000005 33.684 1
## 62 E08000006 32.959 2
## 63 E08000007 19.108 7
## 64 E08000008 29.380 3
## 65 E08000009 15.388 8
## 66 E08000010 24.857 5
## 67 E08000011 41.387 1
## 68 E08000012 41.126 1
## 69 E08000013 29.809 2
## 70 E08000014 25.732 4
## 71 E08000015 26.892 4
## 72 E08000016 29.568 3
## 73 E08000017 29.051 3
## 74 E08000018 28.279 3
## 75 E08000019 27.568 4
## 76 E08000021 28.264 3
## 77 E08000022 21.279 6
## 78 E08000023 30.608 2
## 79 E08000024 29.725 3
## 80 E08000025 37.768 1
## 81 E08000026 28.107 3
## 82 E08000027 22.958 6
## 83 E08000028 34.614 1
## 84 E08000029 17.238 8
## 85 E08000030 30.370 2
## 86 E08000031 33.183 2
## 87 E08000032 33.168 2
## 88 E08000033 24.607 5
## 89 E08000034 23.964 5
## 90 E08000035 26.623 4
## 91 E08000036 26.892 4
## 92 E08000037 25.932 4
## 93 E09000001 13.602 9
## 94 E09000002 34.635 1
## 95 E09000003 17.813 8
## 96 E09000004 16.170 8
## 97 E09000005 26.655 4
## 98 E09000006 15.164 9
## 99 E09000007 24.959 5
## 100 E09000008 23.643 5
## 101 E09000009 23.585 5
## 102 E09000010 26.994 4
## 103 E09000011 25.544 5
## 104 E09000012 35.280 1
## 105 E09000013 24.362 5
## 106 E09000014 31.043 2
## 107 E09000015 14.302 9
## 108 E09000016 17.876 8
## 109 E09000017 18.108 7
## 110 E09000018 22.469 6
## 111 E09000019 32.534 2
## 112 E09000020 23.376 5
## 113 E09000021 11.125 10
## 114 E09000022 28.913 3
## 115 E09000023 28.591 3
## 116 E09000024 14.930 9
## 117 E09000025 32.939 2
## 118 E09000026 20.242 6
## 119 E09000027 10.037 10
## 120 E09000028 29.489 3
## 121 E09000029 14.579 9
## 122 E09000030 35.657 1
## 123 E09000031 30.190 2
## 124 E09000032 18.295 7
## 125 E09000033 27.686 3
## 126 E10000002 9.757 10
## 127 E10000003 13.393 9
## 128 E10000006 21.331 6
## 129 E10000007 18.515 7
## 130 E10000008 17.086 8
## 131 E10000009 14.336 9
## 132 E10000011 18.825 7
## 133 E10000012 17.163 8
## 134 E10000013 15.014 9
## 135 E10000014 11.917 10
## 136 E10000015 12.192 10
## 137 E10000016 18.805 7
## 138 E10000017 22.495 6
## 139 E10000018 12.457 9
## 140 E10000019 20.609 6
## 141 E10000020 21.158 6
## 142 E10000021 18.936 7
## 143 E10000023 14.646 9
## 144 E10000024 18.850 7
## 145 E10000025 11.513 10
## 146 E10000027 17.783 8
## 147 E10000028 16.380 8
## 148 E10000029 18.314 7
## 149 E10000030 9.386 10
## 150 E10000031 15.006 9
## 151 E10000032 14.027 9
## 152 E10000034 17.704 8
Having extracted data it can be visualised using the fingertipscharts
package which produces visualisations available through the Fingertips website.
These include:
le <- example %>%
filter(str_detect(IndicatorName, "Life") , Sex == "Male")
p <- fingertipscharts::box_plots(le, timeperiod = Timeperiod, value = Value,
title = "Life expectancy and birth: variation over time")
p
library(fingertipsR)
library(dplyr)
library(fingertipscharts)
df <- fingertips_data(40401, AreaTypeID = 101) %>%
filter(Sex == "Male" &
AreaType == "District & UA" &
TimeperiodSortable == max(TimeperiodSortable))
## ultra-generalised lower tier LA boundaries
ons_api <- "https://opendata.arcgis.com/datasets/ae90afc385c04d869bc8cf8890bd1bcd_3.geojson"
ordered_levels <- c("Better",
"Similar",
"Worse",
"Not compared")
df <- df %>%
mutate(ComparedtoEnglandvalueorpercentiles =
factor(ComparedtoEnglandvalueorpercentiles,
levels = ordered_levels))
p <- fingertipscharts::map(data = df,
ons_api = ons_api,
area_code = AreaCode,
fill = ComparedtoEnglandvalueorpercentiles,
title = "Premature deaths from heart disease",
subtitle = "Males in Lower Tier Local Authorities England",
copyright_size = 3)
p