Datos de las pólizas Distribuciones discretas
datos<-c(rep(1,6),rep(2,180),rep(3,462),rep(4,594),rep(5,741),
rep(6,831),rep(7,701),rep(8,229),rep(9,80),rep(10,74),rep(11,67)
,rep(12,57),rep(13,50),rep(14,43),rep(15,34),rep(16,27),
rep(17,19),rep(18,11),rep(19,2),rep(20,0))
la Esperanza y varianza observadas son:
esperanza_obs<-mean(datos)
varianza_obs<-var(datos)
esperanza_obs
## [1] 5.986692
varianza_obs
## [1] 7.708404
x<-c(1:20)
probas<-c(6/4208, 180/4208, 462/4208, 594/4208, 741/4208, 831/4208,
701/4208, 229/4208, 80/4208, 74/4208, 67/4208, 57/4208,
50/4208, 43/4208, 34/4208, 27/4208, 19/4208, 11/4208, 2/4208, 0)
El VaR y TVaR observados al 0.95 son
var_observado<-quantile(datos, 0.95)
tvar_observado<- sum(x[c(13:20)]*probas[(c(13:20))])/(1-0.95)
var_observado
## 95%
## 12
tvar_observado
## [1] 13.0846
hist(datos)
abline(v=esperanza_obs, col="blue")
text(esperanza_obs,0, "esperanza obs", col="blue")
abline(v=var_observado, col="red")
text(var_observado,0, "VaR obs", col="red")
abline(v=tvar_observado, col="yellow")
text(tvar_observado,0, "TVaR obs", col="yellow")
Ajuste Binomial negativa
require(fitdistrplus)
## Loading required package: fitdistrplus
## Loading required package: MASS
## Loading required package: survival
## Loading required package: npsurv
## Loading required package: lsei
binom_neg<-fitdist(datos,distr="nbinom", method=c("mle"),start = NULL )
La esperanza y varianza teóricas son
mu_nbinom<-binom_neg$estimate[2]
p<-binom_neg$estimate[1]/(mu_nbinom+binom_neg$estimate[1])
var_nbinom<-binom_neg$estimate[1]*(1-p)/(p*p)
mu_nbinom
## mu
## 5.986313
var_nbinom
## size
## 7.309887
El VaR teórico
VaR_Nbinom<-quantile(binom_neg, 0.95)
VaR_Nbinom
## Estimated quantiles for each specified probability (non-censored data)
## p=0.95
## estimate 11
denscomp(binom_neg)
abline(v=mu_nbinom, col="blue")
text(mu_nbinom,0, "esperanza nbinom", col="blue")
abline(v=11, col="red")
text(11,0, "VaR nbinom", col="red")
Ajuste Poisson
pois<-fitdist(datos,distr="pois", method=c("mle"),start = NULL )
La esperanza y varianza teórica en la distribución poisson, es el parámetro lambda que es:
lambda<-pois$estimate
lambda
## lambda
## 5.986692
El VaR teórico de la distribución Poisson
VaR_Poisson<-quantile(pois, 0.95)
VaR_Poisson
## Estimated quantiles for each specified probability (non-censored data)
## p=0.95
## estimate 10
j<-10-2
s<-c()
for(i in 0:j){
s[i+1]=lambda^i/factorial(i)
}
s
## [1] 1.000000 5.986692 17.920241 35.760987 53.522504 64.084550 63.942410
## [8] 54.686217 40.923692
TVaR_Poisson<-lambda*exp(-lambda)*(exp(lambda)-sum(s))/0.05
TVaR_Poisson
## lambda
## 18.12667
denscomp(pois)
abline(v=lambda, col="blue")
text(lambda,0, "esperanza Poisson", col="blue")
abline(v=10, col="red")
text(10,0, "VaR Poisson", col="red")
Distribuciones continuas