Choose independently two numbers B and C at random from the interval [0, 1] with uniform density. Prove that B and C are proper probability distributions. Note that the point (B,C) is then chosen at random in the unit square.
\[B + C < 1/2\]
n = 10000
B = runif(n, min = 0, max = 1)
C = runif(n, min = 0, max = 1)
sum((B+C) <0.5)/n
## [1] 0.1233
\[BC < 1/2\]
sum((B*C)<0.5)/n
## [1] 0.8446
\[|B - C| < 0.5\]
sum(abs(B-C)<0.5)/n
## [1] 0.7418
\[max(B,C) < 0.5\]
index <- 0
for (x in 1:n){
if(max(c(B[x],C[x])) < 0.5 ){
index = index + 1
}
}
index/n
## [1] 0.2486
\[min(B,C) < 0.5\]
index <- 0
for (x in 1:n){
if(min(c(B[x],C[x])) < 0.5 ){
index = index + 1
}
}
index/n
## [1] 0.7513