Assignment 5

Choose independently two numbers B and C at random from the interval [0, 1] with uniform density. Prove that B and C are proper probability distributions. Note that the point (B,C) is then chosen at random in the unit square. Find the probability that

  1. B + C < 0.5
  2. B*C < 0.5
  3. |B - C| < 0.5
  4. max(B,C) < 0.5
  5. min(B,C) < 0.5

Note that the point (B,C) is then chosen at random in the unit square <=> \(B(x, y) + C(x, y) = 1\) => \(B(0, 1/2) + C(1/2, 0) = 1\)


(a) B + C < 1/2.

if $B + C < 1/2: x < 1/2, y < 1/2 - x $, then:

\[ P\Bigg(B + C < 1/2\Bigg) = P\Bigg( 0 < x < 1/2, \space 0 < y < 1/2 - x \Bigg) \\ =\int_{0}^{1/2}\int_{0}^{1/2-x} dydx =\int_{0}^{1/2}[1/2-x] dx \\ =\Bigg[ x/2 - x^2/2 \Bigg]_{0}^{1/2} =1/4 - 1/8 = 1/8 =0.125 \]


(b) B*C < 1/2.

\(\begin{cases} B=1 * C=1/2 < 1/2 \\ or\\ B=1/2 * C=1 < 1/2 \end{cases}\)

\[ P\Bigg( B*C < 1/2\Bigg) = P\Bigg( 0 < x < 1/2, \space 0 < y < 1 - x \Bigg) \\ =\int_{0}^{1/2}\int_{0}^{1-x} dydx =\int_{0}^{1/2}[1-x] dx \\ =\Bigg[ x - x^2/2 \Bigg]_{0}^{1/2} =1/2 - 1/8 = 3/8 =0.375 \]


(c) |B -C| < 1/2

\(\begin{cases} B + C = 1 (given) \\ |B - C| < 1/2 => 1-C-C < 1/2 => \begin{cases} C > 1/4 \\ B = 1-C < 3/4\end{cases} \end{cases}\)

\[ P \Bigg(|B - C| < 1/2\Bigg) = P\Bigg( C > 1/4, \space B < 3/4 \Bigg) = P\Bigg( 1/4 < x < 1, \space 1/4 + x < y < 3/4 \Bigg) \\ =\int_{1/4}^{1}\int_{0}^{3/4-x} dydx =\int_{0}^{1/4}[y]_{0}^{3/4-x} dx =\int_{1/4}^{1}(3/4-x) dx\\ =[3x/4 - x^2/2]_{1/4}^{1} = 3/4 - 1/32 - 3/4 + 1/2 =15/32 =0.46875 \]


(d) max{B,C} < 1/2.

\(max(B, C) = 1/2(B+C+|B-C|)\)

\[ P\Bigg( max\left\{\begin{array}{lr} B, C\end{array}\right\} < 1/2\Bigg) = P\Bigg( 1/2*(B+C+|B-C|)\Bigg) = 1/2 * P\Bigg( P(B+C)+ P(|B-C|) \Bigg) \\ = 1/2 * (1/8 + 15/32) = 19/64 = 0.296875 \]


(e) min{B,C} < 1/2.

\[ P\Bigg( min\left\{\begin{array}{lr}B, C\end{array}\right\} < 1/2\Bigg) = P\Bigg( 1/2*(B+C-|B-C|)\Bigg) = 1/2 * P\Bigg( P(B+C)- P(|B-C|) \Bigg) \\ = 1/2 * (1/8 - 15/32) = 11/64 = 0.171875 \]