overall.dat<-data.frame(atanh_out,alch_sub$total,dep_sub$total,swls_sub$total,rosenberg_sub$total,stress_sub$total)
p.alch.o<-ggplot(overall.dat, aes(x=alch_sub.total, y=atanh_out)) + geom_point(color="yellow3",pch=19,size=2)+geom_smooth(method=lm,color="yellow3",fill="yellow3",size=1.1)+theme_minimal()+labs(x="alchohol usage",y="overall average similarity")+theme(axis.title.x = element_text(face="bold"),axis.title.y = element_text(face="bold"))+stat_cor(method = "pearson",label.x.npc = "right",label.y=2.5)
  
p.dep.o<-ggplot(overall.dat, aes(x=dep_sub.total, y=atanh_out)) + geom_point(color="blue",pch=19,size=2)+geom_smooth(method=lm,color="blue",fill="blue",size=1.1)+theme_minimal()+labs(x="depression",y="overall average similarity")+theme(axis.title.x = element_text(face="bold"),axis.title.y = element_text(face="bold"))+stat_cor(method = "pearson",label.x.npc = "right",label.y=2.5)
p.stress.o<-ggplot(overall.dat, aes(x=stress_sub.total, y=atanh_out)) + geom_point(color="red",pch=19,size=2)+geom_smooth(method=lm,color="red",fill="red",size=1.1)+theme_minimal()+labs(x="stress",y="overall average similarity")+theme(axis.title.x = element_text(face="bold"),axis.title.y = element_text(face="bold"))+stat_cor(method = "pearson",label.x.npc = "right",label.y=2.5)
p.se.o<-ggplot(overall.dat, aes(x=rosenberg_sub.total, y=atanh_out)) + geom_point(color="green",pch=19,size=2)+geom_smooth(method=lm,color="green",fill="green",size=1.1)+theme_minimal()+labs(x="SE",y="soverall average similarity")+theme(axis.title.x = element_text(face="bold"),axis.title.y = element_text(face="bold"))+stat_cor(method = "pearson",label.x.npc = "left",label.y=2.5)
p.swls.o<-ggplot(overall.dat, aes(x=swls_sub.total, y=atanh_out)) + geom_point(color="purple",pch=19,size=2)+geom_smooth(method=lm,color="purple",fill="purple",size=1.1)+theme_minimal()+labs(x="SWLS",y="overall average similarity")+theme(axis.title.x = element_text(face="bold"),axis.title.y = element_text(face="bold"))+stat_cor(method = "pearson",label.x.npc = "left",label.y = 2.5)
grid.arrange(p.alch.o,p.dep.o,p.stress.o,p.se.o,p.swls.o,nrow=2,top=textGrob("Daily QC: Blue",gp=gpar(fontface="bold")))

all.dat<-data.frame(atanh_out,stress_sub$total,alch_sub$total,dep_sub$total,rosenberg_sub$total,swls_sub$total)
summary(lm(atanh_out~stress_sub.total+alch_sub.total+dep_sub.total+rosenberg_sub.total+swls_sub.total,data=all.dat))

Call:
lm(formula = atanh_out ~ stress_sub.total + alch_sub.total + 
    dep_sub.total + rosenberg_sub.total + swls_sub.total, data = all.dat)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.81951 -0.17662  0.00491  0.19238  0.91467 

Coefficients:
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)          1.3359458  0.2380126   5.613 2.44e-07 ***
stress_sub.total    -0.0184939  0.0059996  -3.083  0.00277 ** 
alch_sub.total      -0.0078478  0.0082610  -0.950  0.34481    
dep_sub.total       -0.0017084  0.0054843  -0.312  0.75618    
rosenberg_sub.total -0.0038574  0.0081202  -0.475  0.63598    
swls_sub.total      -0.0009843  0.0062860  -0.157  0.87594    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.295 on 85 degrees of freedom
Multiple R-squared:  0.2075,    Adjusted R-squared:  0.1609 
F-statistic: 4.452 on 5 and 85 DF,  p-value: 0.001191
p.alch<-ggplot(t, aes(x=alch_sub.total, y=similiarity)) + geom_point(color="yellow3",pch=19,size=2)+geom_smooth(method=lm,color="yellow3",fill="yellow3",size=1.1)+theme_minimal()+labs(x="alchohol usage",y="similarity between friend and sig other")+theme(axis.title.x = element_text(face="bold"),axis.title.y = element_text(face="bold"))+stat_cor(method = "pearson",label.x.npc = "right",label.y=2.5)
  
p.dep<-ggplot(t, aes(x=dep_sub.total, y=similiarity)) + geom_point(color="blue",pch=19,size=2)+geom_smooth(method=lm,color="blue",fill="blue",size=1.1)+theme_minimal()+labs(x="depression",y="similarity between friend and sig other")+theme(axis.title.x = element_text(face="bold"),axis.title.y = element_text(face="bold"))+stat_cor(method = "pearson",label.x.npc = "right",label.y=2.5)
p.stress<-ggplot(t, aes(x=stress_sub.total, y=similiarity)) + geom_point(color="red",pch=19,size=2)+geom_smooth(method=lm,color="red",fill="red",size=1.1)+theme_minimal()+labs(x="stress",y="similarity between friend and sig other")+theme(axis.title.x = element_text(face="bold"),axis.title.y = element_text(face="bold"))+stat_cor(method = "pearson",label.x.npc = "right",label.y=2.5)
p.se<-ggplot(t, aes(x=rosenberg_sub.total, y=similiarity)) + geom_point(color="green",pch=19,size=2)+geom_smooth(method=lm,color="green",fill="green",size=1.1)+theme_minimal()+labs(x="SE",y="ssimilarity between friend and sig other")+theme(axis.title.x = element_text(face="bold"),axis.title.y = element_text(face="bold"))+stat_cor(method = "pearson",label.x.npc = "left",label.y=2.5)
p.swls<-ggplot(t, aes(x=swls_sub.total, y=similiarity)) + geom_point(color="purple",pch=19,size=2)+geom_smooth(method=lm,color="purple",fill="purple",size=1.1)+theme_minimal()+labs(x="SWLS",y="similarity between friend and sig other")+theme(axis.title.x = element_text(face="bold"),axis.title.y = element_text(face="bold"))+stat_cor(method = "pearson",label.x.npc = "left",label.y = 2.5)
grid.arrange(p.alch,p.dep,p.stress,p.se,p.swls,nrow=2)

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCm92ZXJhbGwuZGF0PC1kYXRhLmZyYW1lKGF0YW5oX291dCxhbGNoX3N1YiR0b3RhbCxkZXBfc3ViJHRvdGFsLHN3bHNfc3ViJHRvdGFsLHJvc2VuYmVyZ19zdWIkdG90YWwsc3RyZXNzX3N1YiR0b3RhbCkNCg0KDQpwLmFsY2gubzwtZ2dwbG90KG92ZXJhbGwuZGF0LCBhZXMoeD1hbGNoX3N1Yi50b3RhbCwgeT1hdGFuaF9vdXQpKSArIGdlb21fcG9pbnQoY29sb3I9InllbGxvdzMiLHBjaD0xOSxzaXplPTIpK2dlb21fc21vb3RoKG1ldGhvZD1sbSxjb2xvcj0ieWVsbG93MyIsZmlsbD0ieWVsbG93MyIsc2l6ZT0xLjEpK3RoZW1lX21pbmltYWwoKStsYWJzKHg9ImFsY2hvaG9sIHVzYWdlIix5PSJvdmVyYWxsIGF2ZXJhZ2Ugc2ltaWxhcml0eSIpK3RoZW1lKGF4aXMudGl0bGUueCA9IGVsZW1lbnRfdGV4dChmYWNlPSJib2xkIiksYXhpcy50aXRsZS55ID0gZWxlbWVudF90ZXh0KGZhY2U9ImJvbGQiKSkrc3RhdF9jb3IobWV0aG9kID0gInBlYXJzb24iLGxhYmVsLngubnBjID0gInJpZ2h0IixsYWJlbC55PTIuNSkNCiAgDQpwLmRlcC5vPC1nZ3Bsb3Qob3ZlcmFsbC5kYXQsIGFlcyh4PWRlcF9zdWIudG90YWwsIHk9YXRhbmhfb3V0KSkgKyBnZW9tX3BvaW50KGNvbG9yPSJibHVlIixwY2g9MTksc2l6ZT0yKStnZW9tX3Ntb290aChtZXRob2Q9bG0sY29sb3I9ImJsdWUiLGZpbGw9ImJsdWUiLHNpemU9MS4xKSt0aGVtZV9taW5pbWFsKCkrbGFicyh4PSJkZXByZXNzaW9uIix5PSJvdmVyYWxsIGF2ZXJhZ2Ugc2ltaWxhcml0eSIpK3RoZW1lKGF4aXMudGl0bGUueCA9IGVsZW1lbnRfdGV4dChmYWNlPSJib2xkIiksYXhpcy50aXRsZS55ID0gZWxlbWVudF90ZXh0KGZhY2U9ImJvbGQiKSkrc3RhdF9jb3IobWV0aG9kID0gInBlYXJzb24iLGxhYmVsLngubnBjID0gInJpZ2h0IixsYWJlbC55PTIuNSkNCg0KcC5zdHJlc3MubzwtZ2dwbG90KG92ZXJhbGwuZGF0LCBhZXMoeD1zdHJlc3Nfc3ViLnRvdGFsLCB5PWF0YW5oX291dCkpICsgZ2VvbV9wb2ludChjb2xvcj0icmVkIixwY2g9MTksc2l6ZT0yKStnZW9tX3Ntb290aChtZXRob2Q9bG0sY29sb3I9InJlZCIsZmlsbD0icmVkIixzaXplPTEuMSkrdGhlbWVfbWluaW1hbCgpK2xhYnMoeD0ic3RyZXNzIix5PSJvdmVyYWxsIGF2ZXJhZ2Ugc2ltaWxhcml0eSIpK3RoZW1lKGF4aXMudGl0bGUueCA9IGVsZW1lbnRfdGV4dChmYWNlPSJib2xkIiksYXhpcy50aXRsZS55ID0gZWxlbWVudF90ZXh0KGZhY2U9ImJvbGQiKSkrc3RhdF9jb3IobWV0aG9kID0gInBlYXJzb24iLGxhYmVsLngubnBjID0gInJpZ2h0IixsYWJlbC55PTIuNSkNCg0KcC5zZS5vPC1nZ3Bsb3Qob3ZlcmFsbC5kYXQsIGFlcyh4PXJvc2VuYmVyZ19zdWIudG90YWwsIHk9YXRhbmhfb3V0KSkgKyBnZW9tX3BvaW50KGNvbG9yPSJncmVlbiIscGNoPTE5LHNpemU9MikrZ2VvbV9zbW9vdGgobWV0aG9kPWxtLGNvbG9yPSJncmVlbiIsZmlsbD0iZ3JlZW4iLHNpemU9MS4xKSt0aGVtZV9taW5pbWFsKCkrbGFicyh4PSJTRSIseT0ic292ZXJhbGwgYXZlcmFnZSBzaW1pbGFyaXR5IikrdGhlbWUoYXhpcy50aXRsZS54ID0gZWxlbWVudF90ZXh0KGZhY2U9ImJvbGQiKSxheGlzLnRpdGxlLnkgPSBlbGVtZW50X3RleHQoZmFjZT0iYm9sZCIpKStzdGF0X2NvcihtZXRob2QgPSAicGVhcnNvbiIsbGFiZWwueC5ucGMgPSAibGVmdCIsbGFiZWwueT0yLjUpDQoNCnAuc3dscy5vPC1nZ3Bsb3Qob3ZlcmFsbC5kYXQsIGFlcyh4PXN3bHNfc3ViLnRvdGFsLCB5PWF0YW5oX291dCkpICsgZ2VvbV9wb2ludChjb2xvcj0icHVycGxlIixwY2g9MTksc2l6ZT0yKStnZW9tX3Ntb290aChtZXRob2Q9bG0sY29sb3I9InB1cnBsZSIsZmlsbD0icHVycGxlIixzaXplPTEuMSkrdGhlbWVfbWluaW1hbCgpK2xhYnMoeD0iU1dMUyIseT0ib3ZlcmFsbCBhdmVyYWdlIHNpbWlsYXJpdHkiKSt0aGVtZShheGlzLnRpdGxlLnggPSBlbGVtZW50X3RleHQoZmFjZT0iYm9sZCIpLGF4aXMudGl0bGUueSA9IGVsZW1lbnRfdGV4dChmYWNlPSJib2xkIikpK3N0YXRfY29yKG1ldGhvZCA9ICJwZWFyc29uIixsYWJlbC54Lm5wYyA9ICJsZWZ0IixsYWJlbC55ID0gMi41KQ0KDQpncmlkLmFycmFuZ2UocC5hbGNoLm8scC5kZXAubyxwLnN0cmVzcy5vLHAuc2UubyxwLnN3bHMubyxucm93PTIsdG9wPXRleHRHcm9iKCJEYWlseSBRQzogQmx1ZSIsZ3A9Z3Bhcihmb250ZmFjZT0iYm9sZCIpKSkNCg0KDQoNCmBgYA0KDQpgYGB7cn0NCmFsbC5kYXQ8LWRhdGEuZnJhbWUoYXRhbmhfb3V0LHN0cmVzc19zdWIkdG90YWwsYWxjaF9zdWIkdG90YWwsZGVwX3N1YiR0b3RhbCxyb3NlbmJlcmdfc3ViJHRvdGFsLHN3bHNfc3ViJHRvdGFsKQ0KDQpzdW1tYXJ5KGxtKGF0YW5oX291dH5zdHJlc3Nfc3ViLnRvdGFsK2FsY2hfc3ViLnRvdGFsK2RlcF9zdWIudG90YWwrcm9zZW5iZXJnX3N1Yi50b3RhbCtzd2xzX3N1Yi50b3RhbCxkYXRhPWFsbC5kYXQpKQ0KYGBgDQoNCmBgYHtyfQ0KcC5hbGNoPC1nZ3Bsb3QodCwgYWVzKHg9YWxjaF9zdWIudG90YWwsIHk9c2ltaWxpYXJpdHkpKSArIGdlb21fcG9pbnQoY29sb3I9InllbGxvdzMiLHBjaD0xOSxzaXplPTIpK2dlb21fc21vb3RoKG1ldGhvZD1sbSxjb2xvcj0ieWVsbG93MyIsZmlsbD0ieWVsbG93MyIsc2l6ZT0xLjEpK3RoZW1lX21pbmltYWwoKStsYWJzKHg9ImFsY2hvaG9sIHVzYWdlIix5PSJzaW1pbGFyaXR5IGJldHdlZW4gZnJpZW5kIGFuZCBzaWcgb3RoZXIiKSt0aGVtZShheGlzLnRpdGxlLnggPSBlbGVtZW50X3RleHQoZmFjZT0iYm9sZCIpLGF4aXMudGl0bGUueSA9IGVsZW1lbnRfdGV4dChmYWNlPSJib2xkIikpK3N0YXRfY29yKG1ldGhvZCA9ICJwZWFyc29uIixsYWJlbC54Lm5wYyA9ICJyaWdodCIsbGFiZWwueT0yLjUpDQogIA0KcC5kZXA8LWdncGxvdCh0LCBhZXMoeD1kZXBfc3ViLnRvdGFsLCB5PXNpbWlsaWFyaXR5KSkgKyBnZW9tX3BvaW50KGNvbG9yPSJibHVlIixwY2g9MTksc2l6ZT0yKStnZW9tX3Ntb290aChtZXRob2Q9bG0sY29sb3I9ImJsdWUiLGZpbGw9ImJsdWUiLHNpemU9MS4xKSt0aGVtZV9taW5pbWFsKCkrbGFicyh4PSJkZXByZXNzaW9uIix5PSJzaW1pbGFyaXR5IGJldHdlZW4gZnJpZW5kIGFuZCBzaWcgb3RoZXIiKSt0aGVtZShheGlzLnRpdGxlLnggPSBlbGVtZW50X3RleHQoZmFjZT0iYm9sZCIpLGF4aXMudGl0bGUueSA9IGVsZW1lbnRfdGV4dChmYWNlPSJib2xkIikpK3N0YXRfY29yKG1ldGhvZCA9ICJwZWFyc29uIixsYWJlbC54Lm5wYyA9ICJyaWdodCIsbGFiZWwueT0yLjUpDQoNCnAuc3RyZXNzPC1nZ3Bsb3QodCwgYWVzKHg9c3RyZXNzX3N1Yi50b3RhbCwgeT1zaW1pbGlhcml0eSkpICsgZ2VvbV9wb2ludChjb2xvcj0icmVkIixwY2g9MTksc2l6ZT0yKStnZW9tX3Ntb290aChtZXRob2Q9bG0sY29sb3I9InJlZCIsZmlsbD0icmVkIixzaXplPTEuMSkrdGhlbWVfbWluaW1hbCgpK2xhYnMoeD0ic3RyZXNzIix5PSJzaW1pbGFyaXR5IGJldHdlZW4gZnJpZW5kIGFuZCBzaWcgb3RoZXIiKSt0aGVtZShheGlzLnRpdGxlLnggPSBlbGVtZW50X3RleHQoZmFjZT0iYm9sZCIpLGF4aXMudGl0bGUueSA9IGVsZW1lbnRfdGV4dChmYWNlPSJib2xkIikpK3N0YXRfY29yKG1ldGhvZCA9ICJwZWFyc29uIixsYWJlbC54Lm5wYyA9ICJyaWdodCIsbGFiZWwueT0yLjUpDQoNCnAuc2U8LWdncGxvdCh0LCBhZXMoeD1yb3NlbmJlcmdfc3ViLnRvdGFsLCB5PXNpbWlsaWFyaXR5KSkgKyBnZW9tX3BvaW50KGNvbG9yPSJncmVlbiIscGNoPTE5LHNpemU9MikrZ2VvbV9zbW9vdGgobWV0aG9kPWxtLGNvbG9yPSJncmVlbiIsZmlsbD0iZ3JlZW4iLHNpemU9MS4xKSt0aGVtZV9taW5pbWFsKCkrbGFicyh4PSJTRSIseT0ic3NpbWlsYXJpdHkgYmV0d2VlbiBmcmllbmQgYW5kIHNpZyBvdGhlciIpK3RoZW1lKGF4aXMudGl0bGUueCA9IGVsZW1lbnRfdGV4dChmYWNlPSJib2xkIiksYXhpcy50aXRsZS55ID0gZWxlbWVudF90ZXh0KGZhY2U9ImJvbGQiKSkrc3RhdF9jb3IobWV0aG9kID0gInBlYXJzb24iLGxhYmVsLngubnBjID0gImxlZnQiLGxhYmVsLnk9Mi41KQ0KDQpwLnN3bHM8LWdncGxvdCh0LCBhZXMoeD1zd2xzX3N1Yi50b3RhbCwgeT1zaW1pbGlhcml0eSkpICsgZ2VvbV9wb2ludChjb2xvcj0icHVycGxlIixwY2g9MTksc2l6ZT0yKStnZW9tX3Ntb290aChtZXRob2Q9bG0sY29sb3I9InB1cnBsZSIsZmlsbD0icHVycGxlIixzaXplPTEuMSkrdGhlbWVfbWluaW1hbCgpK2xhYnMoeD0iU1dMUyIseT0ic2ltaWxhcml0eSBiZXR3ZWVuIGZyaWVuZCBhbmQgc2lnIG90aGVyIikrdGhlbWUoYXhpcy50aXRsZS54ID0gZWxlbWVudF90ZXh0KGZhY2U9ImJvbGQiKSxheGlzLnRpdGxlLnkgPSBlbGVtZW50X3RleHQoZmFjZT0iYm9sZCIpKStzdGF0X2NvcihtZXRob2QgPSAicGVhcnNvbiIsbGFiZWwueC5ucGMgPSAibGVmdCIsbGFiZWwueSA9IDIuNSkNCg0KZ3JpZC5hcnJhbmdlKHAuYWxjaCxwLmRlcCxwLnN0cmVzcyxwLnNlLHAuc3dscyxucm93PTIpDQpgYGANCg0K