1. Set working directory
2. Read the data StoreData.csv file into a data frame called store.df.
# reading data and storing into `store.df` dataframe
store.df <- read.csv(paste("StoreData.csv"))
store.df.# number of rows and columns
dim(store.df)
## [1] 2080 10
store.df.# column names
colnames(store.df)
## [1] "storeNum" "Year" "Week" "p1sales" "p2sales" "p1price"
## [7] "p2price" "p1prom" "p2prom" "country"
# data types of the variables of 'store.df' data frame
str(store.df)
## 'data.frame': 2080 obs. of 10 variables:
## $ storeNum: int 101 101 101 101 101 101 101 101 101 101 ...
## $ Year : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Week : int 1 2 3 4 5 6 7 8 9 10 ...
## $ p1sales : int 127 137 156 117 138 115 116 106 116 145 ...
## $ p2sales : int 106 105 97 106 100 127 90 126 94 91 ...
## $ p1price : num 2.29 2.49 2.99 2.99 2.49 2.79 2.99 2.99 2.29 2.49 ...
## $ p2price : num 2.29 2.49 2.99 3.19 2.59 2.49 3.19 2.29 2.29 2.99 ...
## $ p1prom : int 0 0 1 0 0 0 0 0 0 0 ...
## $ p2prom : int 0 0 0 0 1 0 0 0 0 0 ...
## $ country : Factor w/ 7 levels "AU","BR","CN",..: 7 7 7 7 7 7 7 7 7 7 ...
Year, p1prom, p2prom, country} into factor variables.# convert 'Year' into factor
store.df$Year <- as.factor(store.df$Year)
# convert 'p1prom' into factor
store.df$p1prom <- as.factor(store.df$p1prom)
# convert 'p2prom' into factor
store.df$p2prom <- as.factor(store.df$p2prom)
# convert 'country' into factor
store.df$country <- as.factor(store.df$country)
# verifying conversions
str(store.df)
## 'data.frame': 2080 obs. of 10 variables:
## $ storeNum: int 101 101 101 101 101 101 101 101 101 101 ...
## $ Year : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ Week : int 1 2 3 4 5 6 7 8 9 10 ...
## $ p1sales : int 127 137 156 117 138 115 116 106 116 145 ...
## $ p2sales : int 106 105 97 106 100 127 90 126 94 91 ...
## $ p1price : num 2.29 2.49 2.99 2.99 2.49 2.79 2.99 2.99 2.29 2.49 ...
## $ p2price : num 2.29 2.49 2.99 3.19 2.59 2.49 3.19 2.29 2.29 2.99 ...
## $ p1prom : Factor w/ 2 levels "0","1": 1 1 2 1 1 1 1 1 1 1 ...
## $ p2prom : Factor w/ 2 levels "0","1": 1 1 1 1 2 1 1 1 1 1 ...
## $ country : Factor w/ 7 levels "AU","BR","CN",..: 7 7 7 7 7 7 7 7 7 7 ...
# another way to check the conversions happened
is.factor(store.df$p1prom)
## [1] TRUE
store.df.# summary statistics of the dataframe 'store.df'
summary(store.df)
## storeNum Year Week p1sales p2sales
## Min. :101.0 1:1040 Min. : 1.00 Min. : 73 Min. : 51.0
## 1st Qu.:105.8 2:1040 1st Qu.:13.75 1st Qu.:113 1st Qu.: 84.0
## Median :110.5 Median :26.50 Median :129 Median : 96.0
## Mean :110.5 Mean :26.50 Mean :133 Mean :100.2
## 3rd Qu.:115.2 3rd Qu.:39.25 3rd Qu.:150 3rd Qu.:113.0
## Max. :120.0 Max. :52.00 Max. :263 Max. :225.0
##
## p1price p2price p1prom p2prom country
## Min. :2.190 Min. :2.29 0:1872 0:1792 AU:104
## 1st Qu.:2.290 1st Qu.:2.49 1: 208 1: 288 BR:208
## Median :2.490 Median :2.59 CN:208
## Mean :2.544 Mean :2.70 DE:520
## 3rd Qu.:2.790 3rd Qu.:2.99 GB:312
## Max. :2.990 Max. :3.19 JP:416
## US:312
describe() function from the psych package in R.# attaching data columns of dataframe 'store.df'
attach(store.df)
# make sure you have installed the package 'psych'
library(psych)
describe(store.df)[, c(1:5, 6:8, 13)] # selected columns
## vars n mean sd median trimmed mad min se
## storeNum 1 2080 110.50 5.77 110.50 110.50 7.41 101.00 0.13
## Year* 2 2080 1.50 0.50 1.50 1.50 0.74 1.00 0.01
## Week 3 2080 26.50 15.01 26.50 26.50 19.27 1.00 0.33
## p1sales 4 2080 133.05 28.37 129.00 131.08 26.69 73.00 0.62
## p2sales 5 2080 100.16 24.42 96.00 98.05 22.24 51.00 0.54
## p1price 6 2080 2.54 0.29 2.49 2.53 0.44 2.19 0.01
## p2price 7 2080 2.70 0.33 2.59 2.69 0.44 2.29 0.01
## p1prom* 8 2080 1.10 0.30 1.00 1.00 0.00 1.00 0.01
## p2prom* 9 2080 1.14 0.35 1.00 1.05 0.00 1.00 0.01
## country* 10 2080 4.55 1.72 4.50 4.62 2.22 1.00 0.04
store.df by country. Write R code to generate the following break-ups by country.# frequency counts by 'country'
table(country)
## country
## AU BR CN DE GB JP US
## 104 208 208 520 312 416 312
# frequency counts by 'country'
tab1 <- table(country)
# proportions
prop.table(tab1)
## country
## AU BR CN DE GB JP US
## 0.05 0.10 0.10 0.25 0.15 0.20 0.15
# percentages
prop.table(tab1)*100
## country
## AU BR CN DE GB JP US
## 5 10 10 25 15 20 15
2080 rows of weekly data for 20 unique store branches for two different years. For product 1 (Coke) and product 2 (Pepsi), write R code to count the number of weeks,When both products were under promotion?
When product 1 (Coke) was under promotion but product 2 (Pepsi) was not under promotion?
When product 1 (Coke) was not under promotion but product 2 (Pepsi) was under promotion?
When neither product was under promotion?
agg1 <- aggregate(list(p1price, p2price), by = list(p1prom, p2prom), mean)
colnames(agg1) <- c("P1 Promotion", "P2 Promotion", "Average P1 Price", "Average P2 Price")
agg1
## P1 Promotion P2 Promotion Average P1 Price Average P2 Price
## 1 0 0 2.543342 2.700891
## 2 1 0 2.524659 2.703068
## 3 0 1 2.561484 2.691953
## 4 1 1 2.568125 2.671250