library(dplyr)
library(ggplot2)
library(lme4)
data <- read.csv("all_data.csv", header = TRUE)
My data is from a task switching experiment, where participants respond to two different types of task sequence (ABA vs. CBA), and we manipulate whether there is a response repetition or not (repetition vs. switch). The dependent variable is the outcome of a model fit routine, and is therefore a single model parameter per subject per condition. has the following structure:
data[1:30, ]
## subject sequence response_repetition value study
## 1 1_wm ABA switch 1.4649 wm
## 2 1_wm ABA repetition 1.6514 wm
## 3 1_wm CBA switch 1.6809 wm
## 4 1_wm CBA repetition 1.5641 wm
## 5 10_wm ABA switch 2.2977 wm
## 6 10_wm ABA repetition 2.1395 wm
## 7 10_wm CBA switch 2.5105 wm
## 8 10_wm CBA repetition 2.4147 wm
## 9 11_wm ABA switch 1.6748 wm
## 10 11_wm ABA repetition 1.4292 wm
## 11 11_wm CBA switch 1.4295 wm
## 12 11_wm CBA repetition 1.7851 wm
## 13 12_wm ABA switch 1.8995 wm
## 14 12_wm ABA repetition 2.0838 wm
## 15 12_wm CBA switch 1.7956 wm
## 16 12_wm CBA repetition 1.9365 wm
## 17 13_wm ABA switch 1.2129 wm
## 18 13_wm ABA repetition 1.1364 wm
## 19 13_wm CBA switch 1.3179 wm
## 20 13_wm CBA repetition 1.2999 wm
## 21 14_wm ABA switch 1.2494 wm
## 22 14_wm ABA repetition 1.2080 wm
## 23 14_wm CBA switch 1.3648 wm
## 24 14_wm CBA repetition 1.3058 wm
## 25 15_wm ABA switch 1.3755 wm
## 26 15_wm ABA repetition 1.5148 wm
## 27 15_wm CBA switch 1.5729 wm
## 28 15_wm CBA repetition 1.4449 wm
## 29 16_wm ABA switch 1.7125 wm
## 30 16_wm ABA repetition 1.9384 wm
str(data)
## 'data.frame': 756 obs. of 5 variables:
## $ subject : Factor w/ 189 levels "1","1_aging",..: 4 4 4 4 8 8 8 8 12 12 ...
## $ sequence : Factor w/ 2 levels "ABA","CBA": 1 1 2 2 1 1 2 2 1 1 ...
## $ response_repetition: Factor w/ 2 levels "repetition","switch": 2 1 2 1 2 1 2 1 2 1 ...
## $ value : num 1.46 1.65 1.68 1.56 2.3 ...
## $ study : Factor w/ 4 levels "aging","mayr",..: 4 4 4 4 4 4 4 4 4 4 ...
Although participants took part in many trials per condition, the model fit routine returns a single parameter value per condition. So, I cannot do the LMM on individual trial data, so will have to treat it as aggregated data.
Here’s a plot of the data:
I am interested in the 2-way interaction of sequence and response_repetition.