#libraries
library(tidyverse)
## -- Attaching packages ---------------------------------------------- tidyverse 1.2.1 --
## v ggplot2 3.0.0     v purrr   0.2.5
## v tibble  1.4.2     v dplyr   0.7.6
## v tidyr   0.8.1     v stringr 1.3.1
## v readr   1.1.1     v forcats 0.3.0
## -- Conflicts ------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(haven)
library(dplyr)
library(sjPlot)
library(ggplot2)
library(list)
## Loading required package: sandwich
library(tidyr)
library(corrplot)
## corrplot 0.84 loaded
library(FactoMineR)
library(factoextra)
## Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at https://goo.gl/13EFCZ
#data

data.eng <- read_sav("C:/Users/emretoros/OneDrive/Makale/ElectoralIntegrity/EI-T/Data_v1/Data_v01_Eng.sav")
dievt <- read.csv("C:/Users/emretoros/OneDrive/Makale/ElectoralIntegrity/EI-T/Data_v1/gmf/DIEV-T.csv", encoding="UTF-8")
lead <- read_sav("C:/Users/emretoros/OneDrive/Makale/ElectoralIntegrity/EI-T/Data_v1/personality/leaderscores.sav")
nai <- read_dta("C:/Users/emretoros/OneDrive/Makale/ElectoralIntegrity/EI-T/Data_v1/personality/nai.dta")

data.eng[data.eng == 99] <- NA



## CONSTRUCTING VARIABLES ##

#Language variable
data.eng$Kurdisha <- data.eng$z0801
data.eng$Kurdishb <- data.eng$z0802
data.eng$Kurdishc <- data.eng$z0803


data.eng <- data.eng %>% 
  mutate(Kurdish = case_when(
    Kurdisha == 1 ~ 1,
    Kurdishb == 1 ~ 1,
    Kurdishc == 1 ~ 1,
    TRUE ~ 0)
  )





#income variable
data.eng$income <- data.eng$z05
data.eng$income[data.eng$income == 99] <- NA

data.eng <- data.eng %>% 
  mutate(income.binary = case_when(
    income == 6 ~ 1,
    income == 7 ~ 1,
    income == 8 ~ 1,
    income == 9 ~ 1,
    TRUE ~ 0
  ))


# housewife
data.eng <- data.eng %>% 
  mutate(housewife = case_when(
    z01 == 5 ~ 1, 
    TRUE ~ 0
  ))



#interest in politics
data.eng <- data.eng %>% 
  mutate(pol.interest = case_when(
    c01 == 3 ~ 1,
    c01 == 4 ~ 1,
    TRUE ~ 0
  ))


#gender variable
data.eng$gender<- data.eng$cins

#age variable
data.eng <- data.eng %>% 
  mutate(age = 2018 -dtarih)

# esea region variable
data.eng <- data.eng %>% 
  mutate(esea = case_when(
    bolge == 10 ~ 1,
    bolge == 11 ~ 1,
    bolge == 12 ~ 1,
    TRUE ~ 0
  ))


# istanbul region variable
data.eng <- data.eng %>% 
  mutate(ist = case_when(
    bolge == 1 ~ 1,
    TRUE ~ 0
  ))


#Education variable
data.eng <- data.eng %>% 
  mutate(edu = case_when(
    z01 == 5 ~ 1,
    z01 == 6 ~ 1,
    z01 == 7 ~ 1,
    z01 == 8 ~ 1,
    TRUE ~ 0
  ))
data.eng$edu.factor <- as.factor(data.eng$edu)

# Top5 Party

data.eng <- data.eng %>% 
  mutate(feel.close.to = case_when(
    e05 == 1 ~ "AKP",
    e05 == 2 ~ "CHP",
    e05 == 3 ~ "HDP",
    e05 == 4 ~ "MHP",
    e05 == 5 ~ "IYI",
    TRUE ~ "Others"
  ))



# AKP voter
data.eng <- data.eng %>% 
  mutate(akp = case_when(
    e05 == 1 ~ 1,
    TRUE ~ 0
  ))


# CHP voter
data.eng <- data.eng %>% 
  mutate(chp = case_when(
    e05 == 2 ~ 1,
    TRUE ~ 0
  ))


# HDP voter
data.eng <- data.eng %>% 
  mutate(hdp = case_when(
    e05 == 3 ~ 1,
    TRUE ~ 0
  ))

# MHP voter
data.eng <- data.eng %>% 
  mutate(mhp = case_when(
    e05 == 4 ~ 1,
    TRUE ~ 0
  ))


# IYI voter
data.eng <- data.eng %>% 
  mutate(iyi = case_when(
    e05 == 5 ~ 1,
    TRUE ~ 0
  ))







# Strong AKP partisan
data.eng <- data.eng %>% 
  mutate(akp.strong = case_when(
    e02 == 1 ~ 1,
    TRUE ~ 0
  ))

# Strong AKP partisan2
data.eng <- data.eng %>% 
  mutate(akp.strong2 = case_when(
    e0101 == 3 ~ 1,
    e0101 == 4 ~ 1,
    TRUE ~ 0
  ))

# Weak AKP partisan2
data.eng <- data.eng %>% 
  mutate(akp.weak2 = case_when(
    e0101 == 3 ~ 1,
    e0101 == 2 ~ 1,
    TRUE ~ 0
  ))


# Strong CHP partisan
data.eng <- data.eng %>% 
  mutate(chp.strong = case_when(
    e02 == 2 ~ 1,
    TRUE ~ 0
  ))
# Strong CHP partisan2
data.eng <- data.eng %>% 
  mutate(chp.strong2 = case_when(
    e0103 == 3 ~ 1,
    e0103 == 4 ~ 1,
    TRUE ~ 0
  ))

# Weak CHP partisan2
data.eng <- data.eng %>% 
  mutate(chp.weak2 = case_when(
    e0103 == 3 ~ 1,
    e0103 == 2 ~ 1,
    TRUE ~ 0
  ))


# Strong HDP partisan
data.eng <- data.eng %>% 
  mutate(hdp.strong = case_when(
    e02 == 3 ~ 1,
    TRUE ~ 0
  ))

# Strong HDP partisan2
data.eng <- data.eng %>% 
  mutate(hdp.strong2 = case_when(
    e0102 == 3 ~ 1,
    e0102 == 4 ~ 1,
    TRUE ~ 0
  ))

# Weak HDP partisan2
data.eng <- data.eng %>% 
  mutate(hdp.weak2 = case_when(
    e0102 == 3 ~ 1,
    e0102 == 2 ~ 1,
    TRUE ~ 0
  ))


# Strong MHP partisan
data.eng <- data.eng %>% 
  mutate(mhp.strong = case_when(
    e02 == 4 ~ 1,
    TRUE ~ 0
  ))
# Strong MHP partisan2
data.eng <- data.eng %>% 
  mutate(mhp.strong2 = case_when(
    e0104 == 3 ~ 1,
    e0104 == 4 ~ 1,
    TRUE ~ 0
  ))

# Weak MHP partisan2
data.eng <- data.eng %>% 
  mutate(mhp.weak2 = case_when(
    e0104 == 3 ~ 1,
    e0104 == 2 ~ 1,
    TRUE ~ 0
  ))


# Strong IYI partisan
data.eng <- data.eng %>% 
  mutate(iyi.strong = case_when(
    e02 == 5 ~ 1,
    TRUE ~ 0
  ))
# Strong IYI partisan2
data.eng <- data.eng %>% 
  mutate(iyi.strong2 = case_when(
    e0105 == 3 ~ 1,
    e0105 == 4 ~ 1,
    TRUE ~ 0
  ))

# Weak IYI partisan2
data.eng <- data.eng %>% 
  mutate(iyi.weak2 = case_when(
    e0105 == 3 ~ 1,
    e0105 == 2 ~ 1,
    TRUE ~ 0
  ))


# RTE voter
data.eng <- data.eng %>% 
  mutate(rte = case_when(
    e06 == 1 ~ 1,
    TRUE ~ 0
  ))

# İnce Voter

data.eng <- data.eng %>% 
  mutate(mi = case_when(
    e06 == 2 ~ 1,
    TRUE ~ 0
  ))

# Aksener Voter

data.eng <- data.eng %>% 
  mutate(ma = case_when(
    e06 == 3 ~ 1,
    TRUE ~ 0
  ))


# Demirtas Voter

data.eng <- data.eng %>% 
  mutate(sd = case_when(
    e06 == 4 ~ 1,
    TRUE ~ 0
  ))




#region variable

data.eng <- data.eng %>% 
  mutate(region = case_when(
    bolge == 1 ~ "Marmara",
    bolge == 2 ~ "Marmara",
    bolge == 3 ~ "Ege",
    bolge == 4 ~ "Marmara",
    bolge == 5 ~ "İç Anadolu",
    bolge == 6 ~ "Akdeniz",
    bolge == 7 ~ "İç Anadolu",
    bolge == 8 ~ "Karadeniz",
    bolge == 9 ~ "Karadeniz",
    TRUE ~ "Doğu ve Güneydoğu Anadolu"
    
  ))
data.eng$region <- as.factor(data.eng$region)
data.eng$region <-relevel(data.eng$region , ref="Doğu ve Güneydoğu Anadolu")

#big5 variables

data.eng$extraversion.enthusiastic <- data.eng$i0301
data.eng$extraversion.reserved <- data.eng$i0306

data.eng$agreeableness.critical <- data.eng$i0302
data.eng$agreeableness.warm <- data.eng$i0307

data.eng$consciousness.dependeble <- data.eng$i0303

data.eng$emotional.anxious <- data.eng$i0304
data.eng$emotional.calm <- data.eng$i0308

data.eng$openness.newexpriences <- data.eng$i0305

data.eng$extraversion <- ((data.eng$extraversion.enthusiastic + data.eng$extraversion.reserved)/2) 
data.eng$agreeableness <- ((data.eng$agreeableness.critical + data.eng$agreeableness.warm)/2) 
data.eng$consciousness <- data.eng$consciousness.dependeble
data.eng$emotional.stability <- ((data.eng$emotional.anxious + data.eng$emotional.calm)/2)
data.eng$openness <- data.eng$openness.newexpriences


sjt.xtab(data.eng$feel.close.to, data.eng$extraversion.enthusiastic,  
         show.col.prc = T)
feel.close.to I0301 -
Enthusiastic,
extrovert - Do you
agree that Recep
Tayyip ErdoÄŸan has
this feature?
Total
Completely disagree Somewhat disagree Neither agree nor
disagree
Somewhat agree Completely agree Do not know/No
answer
AKP 13
6.6 %
15
12.7 %
47
27.6 %
127
48.3 %
380
85.6 %
0
0 %
582
48.8 %
CHP 117
59.1 %
56
47.5 %
48
28.2 %
30
11.4 %
8
1.8 %
0
0 %
259
21.7 %
HDP 38
19.2 %
16
13.6 %
12
7.1 %
24
9.1 %
2
0.5 %
0
0 %
92
7.7 %
IYI 10
5.1 %
10
8.5 %
13
7.6 %
6
2.3 %
2
0.5 %
0
0 %
41
3.4 %
MHP 3
1.5 %
5
4.2 %
9
5.3 %
35
13.3 %
27
6.1 %
0
0 %
79
6.6 %
Others 17
8.6 %
16
13.6 %
41
24.1 %
41
15.6 %
25
5.6 %
0
0 %
140
11.7 %
Total 198
100 %
118
100 %
170
100 %
263
100 %
444
100 %
0
100 %
1193
100 %
χ2=673.975 · df=20 · Cramer’s V=0.376 · Fisher’s p=0.000
sjt.xtab(data.eng$feel.close.to, data.eng$extraversion.reserved,  
         show.col.prc = T)
feel.close.to I0306 - Introvert,
quiet - Do you agree
that Recep Tayyip
ErdoÄŸan has this
feature?
Total
Completely disagree Somewhat disagree Neither agree nor
disagree
Somewhat agree Completely agree Do not know/No
answer
AKP 327
55.2 %
150
52.6 %
62
32 %
25
36.8 %
20
40.8 %
0
0 %
584
49.2 %
CHP 106
17.9 %
48
16.8 %
68
35.1 %
18
26.5 %
18
36.7 %
0
0 %
258
21.7 %
HDP 52
8.8 %
20
7 %
12
6.2 %
5
7.4 %
2
4.1 %
0
0 %
91
7.7 %
IYI 9
1.5 %
17
6 %
10
5.2 %
5
7.4 %
0
0 %
0
0 %
41
3.5 %
MHP 41
6.9 %
18
6.3 %
11
5.7 %
6
8.8 %
3
6.1 %
0
0 %
79
6.6 %
Others 57
9.6 %
32
11.2 %
31
16 %
9
13.2 %
6
12.2 %
0
0 %
135
11.4 %
Total 592
100 %
285
100 %
194
100 %
68
100 %
49
100 %
0
100 %
1188
100 %
χ2=75.196 · df=20 · Cramer’s V=0.126 · Fisher’s p=0.000
sjt.xtab(data.eng$feel.close.to, data.eng$agreeableness.critical,  
         show.col.prc = T)
feel.close.to I0302 - Criticising,
fighter - Do you
agree that Recep
Tayyip ErdoÄŸan has
this feature?
Total
Completely disagree Somewhat disagree Neither agree nor
disagree
Somewhat agree Completely agree Do not know/No
answer
AKP 339
84.3 %
121
61.7 %
63
34.6 %
35
18.4 %
27
12 %
0
0 %
585
49 %
CHP 13
3.2 %
17
8.7 %
42
23.1 %
75
39.5 %
113
50.2 %
0
0 %
260
21.8 %
HDP 5
1.2 %
5
2.6 %
17
9.3 %
27
14.2 %
38
16.9 %
0
0 %
92
7.7 %
IYI 3
0.7 %
5
2.6 %
11
6 %
15
7.9 %
7
3.1 %
0
0 %
41
3.4 %
MHP 24
6 %
16
8.2 %
15
8.2 %
12
6.3 %
12
5.3 %
0
0 %
79
6.6 %
Others 18
4.5 %
32
16.3 %
34
18.7 %
26
13.7 %
28
12.4 %
0
0 %
138
11.5 %
Total 402
100 %
196
100 %
182
100 %
190
100 %
225
100 %
0
100 %
1195
100 %
χ2=526.434 · df=20 · Cramer’s V=0.332 · p=0.000
sjt.xtab(data.eng$feel.close.to, data.eng$agreeableness.warm,  
         show.col.prc = T)
feel.close.to I0307 - Sympathetic,
sincere - Do you
agree that Recep
Tayyip ErdoÄŸan has
this feature?
Total
Completely disagree Somewhat disagree Neither agree nor
disagree
Somewhat agree Completely agree Do not know/No
answer
AKP 10
4.5 %
17
12.1 %
54
30.3 %
154
63.9 %
350
85 %
0
0 %
585
48.9 %
CHP 129
57.6 %
68
48.2 %
40
22.5 %
16
6.6 %
5
1.2 %
0
0 %
258
21.6 %
HDP 42
18.8 %
23
16.3 %
17
9.6 %
7
2.9 %
3
0.7 %
0
0 %
92
7.7 %
IYI 9
4 %
14
9.9 %
13
7.3 %
2
0.8 %
3
0.7 %
0
0 %
41
3.4 %
MHP 6
2.7 %
4
2.8 %
14
7.9 %
29
12 %
26
6.3 %
0
0 %
79
6.6 %
Others 28
12.5 %
15
10.6 %
40
22.5 %
33
13.7 %
25
6.1 %
0
0 %
141
11.8 %
Total 224
100 %
141
100 %
178
100 %
241
100 %
412
100 %
0
100 %
1196
100 %
χ2=719.192 · df=20 · Cramer’s V=0.388 · p=0.000
sjt.xtab(data.eng$feel.close.to, data.eng$consciousness.dependeble,  
         show.col.prc = T)
feel.close.to I0303 - Trustworthy,
disciplined - Do you
agree that Recep
Tayyip ErdoÄŸan has
this feature?
Total
Completely disagree Somewhat disagree Neither agree nor
disagree
Somewhat agree Completely agree Do not know/No
answer
AKP 10
6.1 %
16
9.9 %
40
20.4 %
170
64.6 %
351
84.2 %
0
0 %
587
48.8 %
CHP 85
51.8 %
91
56.2 %
60
30.6 %
18
6.8 %
6
1.4 %
0
0 %
260
21.6 %
HDP 41
25 %
24
14.8 %
20
10.2 %
6
2.3 %
3
0.7 %
0
0 %
94
7.8 %
IYI 10
6.1 %
12
7.4 %
13
6.6 %
3
1.1 %
3
0.7 %
0
0 %
41
3.4 %
MHP 1
0.6 %
6
3.7 %
15
7.7 %
30
11.4 %
27
6.5 %
0
0 %
79
6.6 %
Others 17
10.4 %
13
8 %
48
24.5 %
36
13.7 %
27
6.5 %
0
0 %
141
11.7 %
Total 164
100 %
162
100 %
196
100 %
263
100 %
417
100 %
0
100 %
1202
100 %
χ2=736.347 · df=20 · Cramer’s V=0.391 · p=0.000
sjt.xtab(data.eng$feel.close.to, data.eng$emotional.anxious,  
         show.col.prc = T)
feel.close.to I0304 - Gets angry
easily, anxious - Do
you agree that Recep
Tayyip ErdoÄŸan has
this feature?
Total
Completely disagree Somewhat disagree Neither agree nor
disagree
Somewhat agree Completely agree Do not know/No
answer
AKP 283
81.6 %
138
64.2 %
90
46.6 %
36
17.6 %
33
14.9 %
0
0 %
580
49.1 %
CHP 11
3.2 %
20
9.3 %
41
21.2 %
77
37.6 %
108
48.6 %
0
0 %
257
21.7 %
HDP 6
1.7 %
10
4.7 %
12
6.2 %
24
11.7 %
40
18 %
0
0 %
92
7.8 %
IYI 3
0.9 %
4
1.9 %
11
5.7 %
18
8.8 %
5
2.3 %
0
0 %
41
3.5 %
MHP 26
7.5 %
16
7.4 %
12
6.2 %
16
7.8 %
9
4.1 %
0
0 %
79
6.7 %
Others 18
5.2 %
27
12.6 %
27
14 %
34
16.6 %
27
12.2 %
0
0 %
133
11.3 %
Total 347
100 %
215
100 %
193
100 %
205
100 %
222
100 %
0
100 %
1182
100 %
χ2=451.108 · df=20 · Cramer’s V=0.309 · p=0.000
sjt.xtab(data.eng$feel.close.to, data.eng$emotional.calm,  
         show.col.prc = T)
feel.close.to I0308 - Calm and
emotionally balanced
- Do you agree that
Recep Tayyip ErdoÄŸan
has this feature?
Total
Completely disagree Somewhat disagree Neither agree nor
disagree
Somewhat agree Completely agree Do not know/No
answer
AKP 26
11.2 %
24
15.4 %
85
41.1 %
160
66.1 %
290
83.3 %
0
0 %
585
49.4 %
CHP 119
51.3 %
70
44.9 %
42
20.3 %
16
6.6 %
8
2.3 %
0
0 %
255
21.5 %
HDP 41
17.7 %
23
14.7 %
18
8.7 %
7
2.9 %
1
0.3 %
0
0 %
90
7.6 %
IYI 10
4.3 %
9
5.8 %
15
7.2 %
4
1.7 %
2
0.6 %
0
0 %
40
3.4 %
MHP 10
4.3 %
5
3.2 %
16
7.7 %
24
9.9 %
24
6.9 %
0
0 %
79
6.7 %
Others 26
11.2 %
25
16 %
31
15 %
31
12.8 %
23
6.6 %
0
0 %
136
11.5 %
Total 232
100 %
156
100 %
207
100 %
242
100 %
348
100 %
0
100 %
1185
100 %
χ2=540.443 · df=20 · Cramer’s V=0.338 · p=0.000
sjt.xtab(data.eng$feel.close.to, data.eng$openness.newexpriences,  
         show.col.prc = T)
feel.close.to I0305 - Innovative,
open - Do you agree
that Recep Tayyip
ErdoÄŸan has this
feature?
Total
Completely disagree Somewhat disagree Neither agree nor
disagree
Somewhat agree Completely agree Do not know/No
answer
AKP 11
5.8 %
17
11.3 %
48
27.7 %
156
59.8 %
353
84 %
0
0 %
585
49 %
CHP 106
55.8 %
75
49.7 %
48
27.7 %
24
9.2 %
6
1.4 %
0
0 %
259
21.7 %
HDP 39
20.5 %
16
10.6 %
21
12.1 %
14
5.4 %
3
0.7 %
0
0 %
93
7.8 %
IYI 8
4.2 %
14
9.3 %
12
6.9 %
4
1.5 %
3
0.7 %
0
0 %
41
3.4 %
MHP 4
2.1 %
5
3.3 %
13
7.5 %
28
10.7 %
28
6.7 %
0
0 %
78
6.5 %
Others 22
11.6 %
24
15.9 %
31
17.9 %
35
13.4 %
27
6.4 %
0
0 %
139
11.6 %
Total 190
100 %
151
100 %
173
100 %
261
100 %
420
100 %
0
100 %
1195
100 %
χ2=643.475 · df=20 · Cramer’s V=0.367 · p=0.000
#Models


akp.model <- glm( akp ~ extraversion + agreeableness + consciousness + emotional.stability + openness,
                  family = "binomial",
                  data = data.eng)


chp.model <- glm( chp ~ extraversion + agreeableness + consciousness + emotional.stability + openness, 
                  family = "binomial",
                  data = data.eng)

mhp.model <- glm( mhp ~ extraversion + agreeableness + consciousness + emotional.stability + openness, 
                  family = "binomial",
                  data = data.eng)

hdp.model <- glm( hdp ~ extraversion + agreeableness + consciousness + emotional.stability + openness, 
                  family = "binomial",
                  data = data.eng)


plot_models(akp.model, chp.model, mhp.model, hdp.model,
            show.p = TRUE,
            legend.title = "Voted for...",
            axis.lim = c(0.5, 2.2),
            show.values = TRUE)

#NAI DATA


#use leader names as row name
lead <- lead %>% 
  remove_rownames %>% 
  column_to_rownames(var="Leader") 
## Warning: Setting row names on a tibble is deprecated.
#remove country name
lead <- within(lead, rm(Country))



# Big5 Correspondance Analysis

ca.data.big5 <- lead %>% 
  select(Extraversion, Agreeableness, Conscientiousness, Emotional_stability,  Openness )

ca.big5 <- CA(ca.data.big5, graph = F)
fviz_ca_biplot(ca.big5,
               title = "Big5",
               repel = TRUE)

 # Dark Correspondence Analysis
ca.data.dark <- lead %>% 
  select(Narcissism, Psychopathy, Machiavellianism)

ca.dark <- CA(ca.data.dark, graph = F)
fviz_ca_biplot(ca.dark,
               title = "Dark",
               repel = TRUE)

# Total Correspondence Analysis
ca.lead <- CA(lead, col.sup = 6:8, graph = F)
fviz_ca_biplot(ca.lead,
               title = "Big5 & Dark",
               repel = TRUE)