#libraries
library(tidyverse)
## -- Attaching packages ---------------------------------------------- tidyverse 1.2.1 --
## v ggplot2 3.0.0 v purrr 0.2.5
## v tibble 1.4.2 v dplyr 0.7.6
## v tidyr 0.8.1 v stringr 1.3.1
## v readr 1.1.1 v forcats 0.3.0
## -- Conflicts ------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(haven)
library(dplyr)
library(sjPlot)
library(ggplot2)
library(list)
## Loading required package: sandwich
library(tidyr)
library(corrplot)
## corrplot 0.84 loaded
library(FactoMineR)
library(factoextra)
## Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at https://goo.gl/13EFCZ
#data
data.eng <- read_sav("C:/Users/emretoros/OneDrive/Makale/ElectoralIntegrity/EI-T/Data_v1/Data_v01_Eng.sav")
dievt <- read.csv("C:/Users/emretoros/OneDrive/Makale/ElectoralIntegrity/EI-T/Data_v1/gmf/DIEV-T.csv", encoding="UTF-8")
lead <- read_sav("C:/Users/emretoros/OneDrive/Makale/ElectoralIntegrity/EI-T/Data_v1/personality/leaderscores.sav")
nai <- read_dta("C:/Users/emretoros/OneDrive/Makale/ElectoralIntegrity/EI-T/Data_v1/personality/nai.dta")
data.eng[data.eng == 99] <- NA
## CONSTRUCTING VARIABLES ##
#Language variable
data.eng$Kurdisha <- data.eng$z0801
data.eng$Kurdishb <- data.eng$z0802
data.eng$Kurdishc <- data.eng$z0803
data.eng <- data.eng %>%
mutate(Kurdish = case_when(
Kurdisha == 1 ~ 1,
Kurdishb == 1 ~ 1,
Kurdishc == 1 ~ 1,
TRUE ~ 0)
)
#income variable
data.eng$income <- data.eng$z05
data.eng$income[data.eng$income == 99] <- NA
data.eng <- data.eng %>%
mutate(income.binary = case_when(
income == 6 ~ 1,
income == 7 ~ 1,
income == 8 ~ 1,
income == 9 ~ 1,
TRUE ~ 0
))
# housewife
data.eng <- data.eng %>%
mutate(housewife = case_when(
z01 == 5 ~ 1,
TRUE ~ 0
))
#interest in politics
data.eng <- data.eng %>%
mutate(pol.interest = case_when(
c01 == 3 ~ 1,
c01 == 4 ~ 1,
TRUE ~ 0
))
#gender variable
data.eng$gender<- data.eng$cins
#age variable
data.eng <- data.eng %>%
mutate(age = 2018 -dtarih)
# esea region variable
data.eng <- data.eng %>%
mutate(esea = case_when(
bolge == 10 ~ 1,
bolge == 11 ~ 1,
bolge == 12 ~ 1,
TRUE ~ 0
))
# istanbul region variable
data.eng <- data.eng %>%
mutate(ist = case_when(
bolge == 1 ~ 1,
TRUE ~ 0
))
#Education variable
data.eng <- data.eng %>%
mutate(edu = case_when(
z01 == 5 ~ 1,
z01 == 6 ~ 1,
z01 == 7 ~ 1,
z01 == 8 ~ 1,
TRUE ~ 0
))
data.eng$edu.factor <- as.factor(data.eng$edu)
# Top5 Party
data.eng <- data.eng %>%
mutate(feel.close.to = case_when(
e05 == 1 ~ "AKP",
e05 == 2 ~ "CHP",
e05 == 3 ~ "HDP",
e05 == 4 ~ "MHP",
e05 == 5 ~ "IYI",
TRUE ~ "Others"
))
# AKP voter
data.eng <- data.eng %>%
mutate(akp = case_when(
e05 == 1 ~ 1,
TRUE ~ 0
))
# CHP voter
data.eng <- data.eng %>%
mutate(chp = case_when(
e05 == 2 ~ 1,
TRUE ~ 0
))
# HDP voter
data.eng <- data.eng %>%
mutate(hdp = case_when(
e05 == 3 ~ 1,
TRUE ~ 0
))
# MHP voter
data.eng <- data.eng %>%
mutate(mhp = case_when(
e05 == 4 ~ 1,
TRUE ~ 0
))
# IYI voter
data.eng <- data.eng %>%
mutate(iyi = case_when(
e05 == 5 ~ 1,
TRUE ~ 0
))
# Strong AKP partisan
data.eng <- data.eng %>%
mutate(akp.strong = case_when(
e02 == 1 ~ 1,
TRUE ~ 0
))
# Strong AKP partisan2
data.eng <- data.eng %>%
mutate(akp.strong2 = case_when(
e0101 == 3 ~ 1,
e0101 == 4 ~ 1,
TRUE ~ 0
))
# Weak AKP partisan2
data.eng <- data.eng %>%
mutate(akp.weak2 = case_when(
e0101 == 3 ~ 1,
e0101 == 2 ~ 1,
TRUE ~ 0
))
# Strong CHP partisan
data.eng <- data.eng %>%
mutate(chp.strong = case_when(
e02 == 2 ~ 1,
TRUE ~ 0
))
# Strong CHP partisan2
data.eng <- data.eng %>%
mutate(chp.strong2 = case_when(
e0103 == 3 ~ 1,
e0103 == 4 ~ 1,
TRUE ~ 0
))
# Weak CHP partisan2
data.eng <- data.eng %>%
mutate(chp.weak2 = case_when(
e0103 == 3 ~ 1,
e0103 == 2 ~ 1,
TRUE ~ 0
))
# Strong HDP partisan
data.eng <- data.eng %>%
mutate(hdp.strong = case_when(
e02 == 3 ~ 1,
TRUE ~ 0
))
# Strong HDP partisan2
data.eng <- data.eng %>%
mutate(hdp.strong2 = case_when(
e0102 == 3 ~ 1,
e0102 == 4 ~ 1,
TRUE ~ 0
))
# Weak HDP partisan2
data.eng <- data.eng %>%
mutate(hdp.weak2 = case_when(
e0102 == 3 ~ 1,
e0102 == 2 ~ 1,
TRUE ~ 0
))
# Strong MHP partisan
data.eng <- data.eng %>%
mutate(mhp.strong = case_when(
e02 == 4 ~ 1,
TRUE ~ 0
))
# Strong MHP partisan2
data.eng <- data.eng %>%
mutate(mhp.strong2 = case_when(
e0104 == 3 ~ 1,
e0104 == 4 ~ 1,
TRUE ~ 0
))
# Weak MHP partisan2
data.eng <- data.eng %>%
mutate(mhp.weak2 = case_when(
e0104 == 3 ~ 1,
e0104 == 2 ~ 1,
TRUE ~ 0
))
# Strong IYI partisan
data.eng <- data.eng %>%
mutate(iyi.strong = case_when(
e02 == 5 ~ 1,
TRUE ~ 0
))
# Strong IYI partisan2
data.eng <- data.eng %>%
mutate(iyi.strong2 = case_when(
e0105 == 3 ~ 1,
e0105 == 4 ~ 1,
TRUE ~ 0
))
# Weak IYI partisan2
data.eng <- data.eng %>%
mutate(iyi.weak2 = case_when(
e0105 == 3 ~ 1,
e0105 == 2 ~ 1,
TRUE ~ 0
))
# RTE voter
data.eng <- data.eng %>%
mutate(rte = case_when(
e06 == 1 ~ 1,
TRUE ~ 0
))
# İnce Voter
data.eng <- data.eng %>%
mutate(mi = case_when(
e06 == 2 ~ 1,
TRUE ~ 0
))
# Aksener Voter
data.eng <- data.eng %>%
mutate(ma = case_when(
e06 == 3 ~ 1,
TRUE ~ 0
))
# Demirtas Voter
data.eng <- data.eng %>%
mutate(sd = case_when(
e06 == 4 ~ 1,
TRUE ~ 0
))
#region variable
data.eng <- data.eng %>%
mutate(region = case_when(
bolge == 1 ~ "Marmara",
bolge == 2 ~ "Marmara",
bolge == 3 ~ "Ege",
bolge == 4 ~ "Marmara",
bolge == 5 ~ "İç Anadolu",
bolge == 6 ~ "Akdeniz",
bolge == 7 ~ "İç Anadolu",
bolge == 8 ~ "Karadeniz",
bolge == 9 ~ "Karadeniz",
TRUE ~ "Doğu ve Güneydoğu Anadolu"
))
data.eng$region <- as.factor(data.eng$region)
data.eng$region <-relevel(data.eng$region , ref="Doğu ve Güneydoğu Anadolu")
#big5 variables
data.eng$extraversion.enthusiastic <- data.eng$i0301
data.eng$extraversion.reserved <- data.eng$i0306
data.eng$agreeableness.critical <- data.eng$i0302
data.eng$agreeableness.warm <- data.eng$i0307
data.eng$consciousness.dependeble <- data.eng$i0303
data.eng$emotional.anxious <- data.eng$i0304
data.eng$emotional.calm <- data.eng$i0308
data.eng$openness.newexpriences <- data.eng$i0305
data.eng$extraversion <- ((data.eng$extraversion.enthusiastic + data.eng$extraversion.reserved)/2)
data.eng$agreeableness <- ((data.eng$agreeableness.critical + data.eng$agreeableness.warm)/2)
data.eng$consciousness <- data.eng$consciousness.dependeble
data.eng$emotional.stability <- ((data.eng$emotional.anxious + data.eng$emotional.calm)/2)
data.eng$openness <- data.eng$openness.newexpriences
sjt.xtab(data.eng$feel.close.to, data.eng$extraversion.enthusiastic,
show.col.prc = T)
| feel.close.to |
I0301 - Enthusiastic, extrovert - Do you agree that Recep Tayyip ErdoÄŸan has this feature? |
Total | |||||
|---|---|---|---|---|---|---|---|
| Completely disagree | Somewhat disagree |
Neither agree nor disagree |
Somewhat agree | Completely agree |
Do not know/No answer |
||
| AKP |
13 6.6Â % |
15 12.7Â % |
47 27.6Â % |
127 48.3Â % |
380 85.6Â % |
0 0Â % |
582 48.8Â % |
| CHP |
117 59.1Â % |
56 47.5Â % |
48 28.2Â % |
30 11.4Â % |
8 1.8Â % |
0 0Â % |
259 21.7Â % |
| HDP |
38 19.2Â % |
16 13.6Â % |
12 7.1Â % |
24 9.1Â % |
2 0.5Â % |
0 0Â % |
92 7.7Â % |
| IYI |
10 5.1Â % |
10 8.5Â % |
13 7.6Â % |
6 2.3Â % |
2 0.5Â % |
0 0Â % |
41 3.4Â % |
| MHP |
3 1.5Â % |
5 4.2Â % |
9 5.3Â % |
35 13.3Â % |
27 6.1Â % |
0 0Â % |
79 6.6Â % |
| Others |
17 8.6Â % |
16 13.6Â % |
41 24.1Â % |
41 15.6Â % |
25 5.6Â % |
0 0Â % |
140 11.7Â % |
| Total |
198 100Â % |
118 100Â % |
170 100Â % |
263 100Â % |
444 100Â % |
0 100Â % |
1193 100Â % |
χ2=673.975 · df=20 · Cramer’s V=0.376 · Fisher’s p=0.000 |
sjt.xtab(data.eng$feel.close.to, data.eng$extraversion.reserved,
show.col.prc = T)
| feel.close.to |
I0306 - Introvert, quiet - Do you agree that Recep Tayyip ErdoÄŸan has this feature? |
Total | |||||
|---|---|---|---|---|---|---|---|
| Completely disagree | Somewhat disagree |
Neither agree nor disagree |
Somewhat agree | Completely agree |
Do not know/No answer |
||
| AKP |
327 55.2Â % |
150 52.6Â % |
62 32Â % |
25 36.8Â % |
20 40.8Â % |
0 0Â % |
584 49.2Â % |
| CHP |
106 17.9Â % |
48 16.8Â % |
68 35.1Â % |
18 26.5Â % |
18 36.7Â % |
0 0Â % |
258 21.7Â % |
| HDP |
52 8.8Â % |
20 7Â % |
12 6.2Â % |
5 7.4Â % |
2 4.1Â % |
0 0Â % |
91 7.7Â % |
| IYI |
9 1.5Â % |
17 6Â % |
10 5.2Â % |
5 7.4Â % |
0 0Â % |
0 0Â % |
41 3.5Â % |
| MHP |
41 6.9Â % |
18 6.3Â % |
11 5.7Â % |
6 8.8Â % |
3 6.1Â % |
0 0Â % |
79 6.6Â % |
| Others |
57 9.6Â % |
32 11.2Â % |
31 16Â % |
9 13.2Â % |
6 12.2Â % |
0 0Â % |
135 11.4Â % |
| Total |
592 100Â % |
285 100Â % |
194 100Â % |
68 100Â % |
49 100Â % |
0 100Â % |
1188 100Â % |
χ2=75.196 · df=20 · Cramer’s V=0.126 · Fisher’s p=0.000 |
sjt.xtab(data.eng$feel.close.to, data.eng$agreeableness.critical,
show.col.prc = T)
| feel.close.to |
I0302 - Criticising, fighter - Do you agree that Recep Tayyip ErdoÄŸan has this feature? |
Total | |||||
|---|---|---|---|---|---|---|---|
| Completely disagree | Somewhat disagree |
Neither agree nor disagree |
Somewhat agree | Completely agree |
Do not know/No answer |
||
| AKP |
339 84.3Â % |
121 61.7Â % |
63 34.6Â % |
35 18.4Â % |
27 12Â % |
0 0Â % |
585 49Â % |
| CHP |
13 3.2Â % |
17 8.7Â % |
42 23.1Â % |
75 39.5Â % |
113 50.2Â % |
0 0Â % |
260 21.8Â % |
| HDP |
5 1.2Â % |
5 2.6Â % |
17 9.3Â % |
27 14.2Â % |
38 16.9Â % |
0 0Â % |
92 7.7Â % |
| IYI |
3 0.7Â % |
5 2.6Â % |
11 6Â % |
15 7.9Â % |
7 3.1Â % |
0 0Â % |
41 3.4Â % |
| MHP |
24 6Â % |
16 8.2Â % |
15 8.2Â % |
12 6.3Â % |
12 5.3Â % |
0 0Â % |
79 6.6Â % |
| Others |
18 4.5Â % |
32 16.3Â % |
34 18.7Â % |
26 13.7Â % |
28 12.4Â % |
0 0Â % |
138 11.5Â % |
| Total |
402 100Â % |
196 100Â % |
182 100Â % |
190 100Â % |
225 100Â % |
0 100Â % |
1195 100Â % |
χ2=526.434 · df=20 · Cramer’s V=0.332 · p=0.000 |
sjt.xtab(data.eng$feel.close.to, data.eng$agreeableness.warm,
show.col.prc = T)
| feel.close.to |
I0307 - Sympathetic, sincere - Do you agree that Recep Tayyip ErdoÄŸan has this feature? |
Total | |||||
|---|---|---|---|---|---|---|---|
| Completely disagree | Somewhat disagree |
Neither agree nor disagree |
Somewhat agree | Completely agree |
Do not know/No answer |
||
| AKP |
10 4.5Â % |
17 12.1Â % |
54 30.3Â % |
154 63.9Â % |
350 85Â % |
0 0Â % |
585 48.9Â % |
| CHP |
129 57.6Â % |
68 48.2Â % |
40 22.5Â % |
16 6.6Â % |
5 1.2Â % |
0 0Â % |
258 21.6Â % |
| HDP |
42 18.8Â % |
23 16.3Â % |
17 9.6Â % |
7 2.9Â % |
3 0.7Â % |
0 0Â % |
92 7.7Â % |
| IYI |
9 4Â % |
14 9.9Â % |
13 7.3Â % |
2 0.8Â % |
3 0.7Â % |
0 0Â % |
41 3.4Â % |
| MHP |
6 2.7Â % |
4 2.8Â % |
14 7.9Â % |
29 12Â % |
26 6.3Â % |
0 0Â % |
79 6.6Â % |
| Others |
28 12.5Â % |
15 10.6Â % |
40 22.5Â % |
33 13.7Â % |
25 6.1Â % |
0 0Â % |
141 11.8Â % |
| Total |
224 100Â % |
141 100Â % |
178 100Â % |
241 100Â % |
412 100Â % |
0 100Â % |
1196 100Â % |
χ2=719.192 · df=20 · Cramer’s V=0.388 · p=0.000 |
sjt.xtab(data.eng$feel.close.to, data.eng$consciousness.dependeble,
show.col.prc = T)
| feel.close.to |
I0303 - Trustworthy, disciplined - Do you agree that Recep Tayyip ErdoÄŸan has this feature? |
Total | |||||
|---|---|---|---|---|---|---|---|
| Completely disagree | Somewhat disagree |
Neither agree nor disagree |
Somewhat agree | Completely agree |
Do not know/No answer |
||
| AKP |
10 6.1Â % |
16 9.9Â % |
40 20.4Â % |
170 64.6Â % |
351 84.2Â % |
0 0Â % |
587 48.8Â % |
| CHP |
85 51.8Â % |
91 56.2Â % |
60 30.6Â % |
18 6.8Â % |
6 1.4Â % |
0 0Â % |
260 21.6Â % |
| HDP |
41 25Â % |
24 14.8Â % |
20 10.2Â % |
6 2.3Â % |
3 0.7Â % |
0 0Â % |
94 7.8Â % |
| IYI |
10 6.1Â % |
12 7.4Â % |
13 6.6Â % |
3 1.1Â % |
3 0.7Â % |
0 0Â % |
41 3.4Â % |
| MHP |
1 0.6Â % |
6 3.7Â % |
15 7.7Â % |
30 11.4Â % |
27 6.5Â % |
0 0Â % |
79 6.6Â % |
| Others |
17 10.4Â % |
13 8Â % |
48 24.5Â % |
36 13.7Â % |
27 6.5Â % |
0 0Â % |
141 11.7Â % |
| Total |
164 100Â % |
162 100Â % |
196 100Â % |
263 100Â % |
417 100Â % |
0 100Â % |
1202 100Â % |
χ2=736.347 · df=20 · Cramer’s V=0.391 · p=0.000 |
sjt.xtab(data.eng$feel.close.to, data.eng$emotional.anxious,
show.col.prc = T)
| feel.close.to |
I0304 - Gets angry easily, anxious - Do you agree that Recep Tayyip ErdoÄŸan has this feature? |
Total | |||||
|---|---|---|---|---|---|---|---|
| Completely disagree | Somewhat disagree |
Neither agree nor disagree |
Somewhat agree | Completely agree |
Do not know/No answer |
||
| AKP |
283 81.6Â % |
138 64.2Â % |
90 46.6Â % |
36 17.6Â % |
33 14.9Â % |
0 0Â % |
580 49.1Â % |
| CHP |
11 3.2Â % |
20 9.3Â % |
41 21.2Â % |
77 37.6Â % |
108 48.6Â % |
0 0Â % |
257 21.7Â % |
| HDP |
6 1.7Â % |
10 4.7Â % |
12 6.2Â % |
24 11.7Â % |
40 18Â % |
0 0Â % |
92 7.8Â % |
| IYI |
3 0.9Â % |
4 1.9Â % |
11 5.7Â % |
18 8.8Â % |
5 2.3Â % |
0 0Â % |
41 3.5Â % |
| MHP |
26 7.5Â % |
16 7.4Â % |
12 6.2Â % |
16 7.8Â % |
9 4.1Â % |
0 0Â % |
79 6.7Â % |
| Others |
18 5.2Â % |
27 12.6Â % |
27 14Â % |
34 16.6Â % |
27 12.2Â % |
0 0Â % |
133 11.3Â % |
| Total |
347 100Â % |
215 100Â % |
193 100Â % |
205 100Â % |
222 100Â % |
0 100Â % |
1182 100Â % |
χ2=451.108 · df=20 · Cramer’s V=0.309 · p=0.000 |
sjt.xtab(data.eng$feel.close.to, data.eng$emotional.calm,
show.col.prc = T)
| feel.close.to |
I0308 - Calm and emotionally balanced - Do you agree that Recep Tayyip ErdoÄŸan has this feature? |
Total | |||||
|---|---|---|---|---|---|---|---|
| Completely disagree | Somewhat disagree |
Neither agree nor disagree |
Somewhat agree | Completely agree |
Do not know/No answer |
||
| AKP |
26 11.2Â % |
24 15.4Â % |
85 41.1Â % |
160 66.1Â % |
290 83.3Â % |
0 0Â % |
585 49.4Â % |
| CHP |
119 51.3Â % |
70 44.9Â % |
42 20.3Â % |
16 6.6Â % |
8 2.3Â % |
0 0Â % |
255 21.5Â % |
| HDP |
41 17.7Â % |
23 14.7Â % |
18 8.7Â % |
7 2.9Â % |
1 0.3Â % |
0 0Â % |
90 7.6Â % |
| IYI |
10 4.3Â % |
9 5.8Â % |
15 7.2Â % |
4 1.7Â % |
2 0.6Â % |
0 0Â % |
40 3.4Â % |
| MHP |
10 4.3Â % |
5 3.2Â % |
16 7.7Â % |
24 9.9Â % |
24 6.9Â % |
0 0Â % |
79 6.7Â % |
| Others |
26 11.2Â % |
25 16Â % |
31 15Â % |
31 12.8Â % |
23 6.6Â % |
0 0Â % |
136 11.5Â % |
| Total |
232 100Â % |
156 100Â % |
207 100Â % |
242 100Â % |
348 100Â % |
0 100Â % |
1185 100Â % |
χ2=540.443 · df=20 · Cramer’s V=0.338 · p=0.000 |
sjt.xtab(data.eng$feel.close.to, data.eng$openness.newexpriences,
show.col.prc = T)
| feel.close.to |
I0305 - Innovative, open - Do you agree that Recep Tayyip ErdoÄŸan has this feature? |
Total | |||||
|---|---|---|---|---|---|---|---|
| Completely disagree | Somewhat disagree |
Neither agree nor disagree |
Somewhat agree | Completely agree |
Do not know/No answer |
||
| AKP |
11 5.8Â % |
17 11.3Â % |
48 27.7Â % |
156 59.8Â % |
353 84Â % |
0 0Â % |
585 49Â % |
| CHP |
106 55.8Â % |
75 49.7Â % |
48 27.7Â % |
24 9.2Â % |
6 1.4Â % |
0 0Â % |
259 21.7Â % |
| HDP |
39 20.5Â % |
16 10.6Â % |
21 12.1Â % |
14 5.4Â % |
3 0.7Â % |
0 0Â % |
93 7.8Â % |
| IYI |
8 4.2Â % |
14 9.3Â % |
12 6.9Â % |
4 1.5Â % |
3 0.7Â % |
0 0Â % |
41 3.4Â % |
| MHP |
4 2.1Â % |
5 3.3Â % |
13 7.5Â % |
28 10.7Â % |
28 6.7Â % |
0 0Â % |
78 6.5Â % |
| Others |
22 11.6Â % |
24 15.9Â % |
31 17.9Â % |
35 13.4Â % |
27 6.4Â % |
0 0Â % |
139 11.6Â % |
| Total |
190 100Â % |
151 100Â % |
173 100Â % |
261 100Â % |
420 100Â % |
0 100Â % |
1195 100Â % |
χ2=643.475 · df=20 · Cramer’s V=0.367 · p=0.000 |
#Models
akp.model <- glm( akp ~ extraversion + agreeableness + consciousness + emotional.stability + openness,
family = "binomial",
data = data.eng)
chp.model <- glm( chp ~ extraversion + agreeableness + consciousness + emotional.stability + openness,
family = "binomial",
data = data.eng)
mhp.model <- glm( mhp ~ extraversion + agreeableness + consciousness + emotional.stability + openness,
family = "binomial",
data = data.eng)
hdp.model <- glm( hdp ~ extraversion + agreeableness + consciousness + emotional.stability + openness,
family = "binomial",
data = data.eng)
plot_models(akp.model, chp.model, mhp.model, hdp.model,
show.p = TRUE,
legend.title = "Voted for...",
axis.lim = c(0.5, 2.2),
show.values = TRUE)
#NAI DATA
#use leader names as row name
lead <- lead %>%
remove_rownames %>%
column_to_rownames(var="Leader")
## Warning: Setting row names on a tibble is deprecated.
#remove country name
lead <- within(lead, rm(Country))
# Big5 Correspondance Analysis
ca.data.big5 <- lead %>%
select(Extraversion, Agreeableness, Conscientiousness, Emotional_stability, Openness )
ca.big5 <- CA(ca.data.big5, graph = F)
fviz_ca_biplot(ca.big5,
title = "Big5",
repel = TRUE)
# Dark Correspondence Analysis
ca.data.dark <- lead %>%
select(Narcissism, Psychopathy, Machiavellianism)
ca.dark <- CA(ca.data.dark, graph = F)
fviz_ca_biplot(ca.dark,
title = "Dark",
repel = TRUE)
# Total Correspondence Analysis
ca.lead <- CA(lead, col.sup = 6:8, graph = F)
fviz_ca_biplot(ca.lead,
title = "Big5 & Dark",
repel = TRUE)