Loading packages

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 2.2.1     ✔ readr   1.1.1
## ✔ tibble  1.4.2     ✔ purrr   0.2.5
## ✔ tidyr   0.8.1     ✔ stringr 1.3.1
## ✔ ggplot2 2.2.1     ✔ forcats 0.3.0
## ── Conflicts ────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(lme4)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following object is masked from 'package:tidyr':
## 
##     expand
library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
library(sjstats)
library(jmRtools)
library(MuMIn)

Loading data

SciMo_esm <- read_csv("/Volumes/SCHMIDTLAB/PSE/Data/SciMo/Sci-Mo-esm.csv")
## Parsed with column specification:
## cols(
##   .default = col_double(),
##   stud_ID = col_character(),
##   teacher_ID = col_integer(),
##   subject = col_integer(),
##   month = col_integer(),
##   day = col_integer(),
##   year = col_integer(),
##   pager = col_integer(),
##   Wave = col_integer(),
##   part_stat = col_integer(),
##   gender = col_integer(),
##   race = col_integer(),
##   grade = col_integer(),
##   age = col_integer(),
##   beep = col_integer(),
##   lecture = col_integer(),
##   lab = col_integer(),
##   manage = col_integer(),
##   present = col_integer(),
##   seat = col_integer(),
##   test = col_integer()
##   # ... with 3 more columns
## )
## See spec(...) for full column specifications.
SciMo_student_survey <- read_csv("/Volumes/SCHMIDTLAB/PSE/Data/SciMo/Sci-Mo-student-survey.csv")
## Parsed with column specification:
## cols(
##   .default = col_double(),
##   stud_ID = col_character(),
##   FirstQuar_2010 = col_integer(),
##   SecondQuar_2010 = col_integer(),
##   ThirdQuar_2010 = col_character(),
##   FourthQuar_2010 = col_character(),
##   ExploreComp_2010 = col_integer(),
##   PlanComp_2010 = col_integer(),
##   ACTComp_2010 = col_integer(),
##   Grad_2010 = col_integer(),
##   FirstQuar_2011 = col_integer(),
##   SecondQuar_2011 = col_integer(),
##   ThirdQuar_2011 = col_character(),
##   FourthQuar_2011 = col_integer(),
##   ExloreComp2011 = col_integer(),
##   ExploreSciComp_2011 = col_integer(),
##   PlanComp_2011 = col_integer(),
##   PlanSciComp_2011 = col_integer(),
##   ACTComp_2011 = col_integer(),
##   ACTSciComp_2011 = col_integer(),
##   Grad_2011 = col_integer()
## )
## See spec(...) for full column specifications.

Creating variables

SciMo_student_survey$female <- ifelse(SciMo_student_survey$gender == 2, 1, 0)
SciMo_student_survey$minority <- ifelse(SciMo_student_survey$race == 4, 0, 1)
SciMo_esm$engagement_three <- composite_mean_maker(SciMo_esm, enjoy, conc, hardwk)
fix_missing <- function(x) {
  x[x == NA] <- 0
  x
}
SciMo_esm$ch_who[is.na(SciMo_esm$ch_who)] <- 0
SciMo_esm$ch_howdo[is.na(SciMo_esm$ch_howdo)] <- 0
SciMo_esm$ch_mat[is.na(SciMo_esm$ch_mat)] <- 0
SciMo_esm$ch_time[is.na(SciMo_esm$ch_time)] <- 0
SciMo_esm$ch_doing[is.na(SciMo_esm$ch_doing)] <- 0
SciMo_esm$ch_topic[is.na(SciMo_esm$ch_topic)] <- 0
SciMo_esm$ch_defin[is.na(SciMo_esm$ch_defin)] <- 0
SciMo_esm$ch_other[is.na(SciMo_esm$ch_other)] <- 0
SciMo_esm$ch_none[is.na(SciMo_esm$ch_none)] <- 0
SciMo_esm$ch_none <- ifelse(((SciMo_esm$ch_who == 0 & SciMo_esm$ch_howdo == 0 & SciMo_esm$ch_mat == 0 & SciMo_esm$ch_time == 0 & SciMo_esm$ch_doing == 0 &
                                SciMo_esm$ch_defin == 0 & SciMo_esm$ch_topic == 0 & SciMo_esm$ch_other == 0) & SciMo_esm$ch_none == 0), 1, SciMo_esm$ch_none)
SciMo_esm$ch_none <- ifelse(((SciMo_esm$ch_who == 1 | SciMo_esm$ch_howdo == 1 | SciMo_esm$ch_mat == 1 | SciMo_esm$ch_time == 1 | SciMo_esm$ch_doing |
                                SciMo_esm$ch_defin == 1 | SciMo_esm$ch_topic == 1 | SciMo_esm$ch_other == 1) & SciMo_esm$ch_none == 1), 0, SciMo_esm$ch_none)
SciMo_esm$ch_framing <- ifelse(SciMo_esm$ch_defin == 1 | SciMo_esm$ch_topic == 1 | SciMo_esm$ch_doing, 1, 0)
SciMo_esm$anychoice <- ifelse(SciMo_esm$ch_mat == 1 | SciMo_esm$ch_howdo == 1 | SciMo_esm$ch_topic == 1 | SciMo_esm$ch_doing == 1 |SciMo_esm$ch_time == 1 |
                                 SciMo_esm$ch_who == 1 | SciMo_esm$ch_defin == 1 |  SciMo_esm$ch_other == 1, 1, 0)

Join data

SciMo_All <- left_join(SciMo_student_survey, SciMo_esm, by = "stud_ID")

Creating new beep_id variable for cross classification

SciMo_All<- SciMo_All %>%
  dplyr::mutate(beep_id = stringr::str_c(signal, teacher_ID1, month, day, year))

Creating scaled interest variable

SciMo_All$interest_c <- scale(SciMo_All$interest)
SciMo_All$interest_fun_c <- scale(SciMo_All$interesfun1, scale = FALSE)

Null Models

Null engagement model

M0 <- lmer(engagement_three ~
             (1|stud_ID) + 
             (1|teacher_ID1) + 
             (1|beep_id), 
           data = SciMo_All)
summary(M0)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## engagement_three ~ (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 8114.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9105 -0.6118  0.0359  0.6346  2.9412 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  beep_id     (Intercept) 0.04092  0.2023  
##  stud_ID     (Intercept) 0.22587  0.4753  
##  teacher_ID1 (Intercept) 0.01347  0.1160  
##  Residual                0.36318  0.6026  
## Number of obs: 4000, groups:  beep_id, 246; stud_ID, 232; teacher_ID1, 12
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)  1.63992    0.04887 9.22780   33.55 5.84e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjstats::icc(M0)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: engagement_three ~ (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.063598
##       ICC (stud_ID): 0.351039
##   ICC (teacher_ID1): 0.020929

Null positive affect model

M00 <- lmer(posaffect ~
             (1|stud_ID) + 
             (1|teacher_ID1) + 
             (1|beep_id), 
            data = SciMo_All)
summary(M00)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: posaffect ~ (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 8239.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5318 -0.6251 -0.1032  0.5371  3.8401 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. 
##  beep_id     (Intercept) 1.500e-02 1.225e-01
##  stud_ID     (Intercept) 3.327e-01 5.768e-01
##  teacher_ID1 (Intercept) 1.840e-14 1.356e-07
##  Residual                3.842e-01 6.199e-01
## Number of obs: 3981, groups:  beep_id, 246; stud_ID, 232; teacher_ID1, 12
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   1.05458    0.04008 247.04400   26.32   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjstats::icc(M00)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: posaffect ~ (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.020490
##       ICC (stud_ID): 0.454562
##   ICC (teacher_ID1): 0.000000

Null negative affect model

M000 <- lmer(negaffect ~
             (1|stud_ID) + 
             (1|teacher_ID1) + 
             (1|beep_id), 
             data = SciMo_All)
summary(M000)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: negaffect ~ (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 7881.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5607 -0.5353 -0.1661  0.3600  4.5185 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  beep_id     (Intercept) 0.01678  0.1295  
##  stud_ID     (Intercept) 0.19936  0.4465  
##  teacher_ID1 (Intercept) 0.01915  0.1384  
##  Residual                0.35730  0.5977  
## Number of obs: 3979, groups:  beep_id, 246; stud_ID, 232; teacher_ID1, 12
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)  0.57816    0.05145 10.16721   11.24 4.66e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjstats::icc(M000)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: negaffect ~ (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.028319
##       ICC (stud_ID): 0.336415
##   ICC (teacher_ID1): 0.032314

Null learning model

M0000 <- lmer(learning ~
             (1|stud_ID) + 
             (1|teacher_ID1) + 
             (1|beep_id), 
             data = SciMo_All)
summary(M0000)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: learning ~ (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 10202
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1959 -0.6187  0.0672  0.6805  2.7706 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  beep_id     (Intercept) 0.06630  0.2575  
##  stud_ID     (Intercept) 0.24948  0.4995  
##  teacher_ID1 (Intercept) 0.02262  0.1504  
##  Residual                0.63593  0.7975  
## Number of obs: 3980, groups:  beep_id, 246; stud_ID, 232; teacher_ID1, 12
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)  1.68250    0.05866 9.77007   28.68 9.28e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjstats::icc(M0000)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: learning ~ (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.068049
##       ICC (stud_ID): 0.256050
##   ICC (teacher_ID1): 0.023213

Models with just any choice and interest as predictors

Engagement

M1 <- lmer(engagement_three ~ 
             interest_c + 
             anychoice +
             (1|stud_ID) + 
             (1|teacher_ID1) + 
             (1|beep_id), 
           data = SciMo_All)
summary(M1, ddf="Kenward-Roger")
## Linear mixed model fit by REML. t-tests use Kenward-Roger's method [
## lmerModLmerTest]
## Formula: engagement_three ~ interest_c + anychoice + (1 | stud_ID) + (1 |  
##     teacher_ID1) + (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 6883.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4682 -0.6178  0.0269  0.6466  3.9273 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  beep_id     (Intercept) 0.01583  0.1258  
##  stud_ID     (Intercept) 0.10332  0.3214  
##  teacher_ID1 (Intercept) 0.01338  0.1157  
##  Residual                0.29460  0.5428  
## Number of obs: 3883, groups:  beep_id, 246; stud_ID, 232; teacher_ID1, 12
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 1.585e+00  4.345e-02 1.300e+01   36.48 1.77e-14 ***
## interest_c  3.755e-01  1.091e-02 3.753e+03   34.42  < 2e-16 ***
## anychoice   8.947e-02  2.254e-02 3.837e+03    3.97 7.32e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) intrs_
## interest_c  0.017       
## anychoice  -0.292 -0.059
sjstats::icc(M1)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: engagement_three ~ interest_c + anychoice + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.037059
##       ICC (stud_ID): 0.241888
##   ICC (teacher_ID1): 0.031325

Positive Affect

M2 <- lmer(posaffect ~ 
             interest_c + 
             anychoice +
             (1|stud_ID) + 
             (1|teacher_ID1) + 
             (1|beep_id), 
           data = SciMo_All)
summary(M2, ddf="Kenward-Roger")
## Linear mixed model fit by REML. t-tests use Kenward-Roger's method [
## lmerModLmerTest]
## Formula: 
## posaffect ~ interest_c + anychoice + (1 | stud_ID) + (1 | teacher_ID1) +  
##     (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 7540.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0085 -0.6229 -0.0944  0.5446  4.3372 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev.
##  beep_id     (Intercept) 0.0034603 0.05882 
##  stud_ID     (Intercept) 0.2713181 0.52088 
##  teacher_ID1 (Intercept) 0.0004677 0.02163 
##  Residual                0.3467685 0.58887 
## Number of obs: 3872, groups:  beep_id, 246; stud_ID, 232; teacher_ID1, 12
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 1.020e+00  3.906e-02 1.330e+01   26.11 8.07e-13 ***
## interest_c  2.674e-01  1.172e-02 3.354e+03   22.81  < 2e-16 ***
## anychoice   6.480e-02  2.446e-02 3.671e+03    2.65   0.0081 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) intrs_
## interest_c  0.018       
## anychoice  -0.346 -0.048
sjstats::icc(M2)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: posaffect ~ interest_c + anychoice + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.005563
##       ICC (stud_ID): 0.436193
##   ICC (teacher_ID1): 0.000752

Negative Affect

M3 <- lmer(negaffect ~ 
             interest_c + 
             anychoice +
             (1|stud_ID) + 
             (1|teacher_ID1) + 
             (1|beep_id), 
           data = SciMo_All)
summary(M3, ddf="Kenward-Roger")
## Linear mixed model fit by REML. t-tests use Kenward-Roger's method [
## lmerModLmerTest]
## Formula: 
## negaffect ~ interest_c + anychoice + (1 | stud_ID) + (1 | teacher_ID1) +  
##     (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 7657
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6520 -0.5392 -0.1693  0.3573  4.6164 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  beep_id     (Intercept) 0.01511  0.1229  
##  stud_ID     (Intercept) 0.19998  0.4472  
##  teacher_ID1 (Intercept) 0.01904  0.1380  
##  Residual                0.35501  0.5958  
## Number of obs: 3872, groups:  beep_id, 246; stud_ID, 232; teacher_ID1, 12
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)  5.819e-01  5.330e-02  1.254e+01  10.917 9.08e-08 ***
## interest_c  -7.660e-02  1.209e-02  3.693e+03  -6.334 2.68e-10 ***
## anychoice   -8.341e-03  2.500e-02  3.852e+03  -0.334    0.739    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) intrs_
## interest_c  0.014       
## anychoice  -0.263 -0.053
sjstats::icc(M3)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: negaffect ~ interest_c + anychoice + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.025647
##       ICC (stud_ID): 0.339439
##   ICC (teacher_ID1): 0.032322

Learning

M4 <- lmer(learning ~ 
             interest_c + 
             anychoice +
             (1|stud_ID) + 
             (1|teacher_ID1) + 
             (1|beep_id), 
           data = SciMo_All)
summary(M4, ddf="Kenward-Roger")
## Linear mixed model fit by REML. t-tests use Kenward-Roger's method [
## lmerModLmerTest]
## Formula: 
## learning ~ interest_c + anychoice + (1 | stud_ID) + (1 | teacher_ID1) +  
##     (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 9296.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6911 -0.6150  0.0329  0.6511  3.0100 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  beep_id     (Intercept) 0.03256  0.1804  
##  stud_ID     (Intercept) 0.12624  0.3553  
##  teacher_ID1 (Intercept) 0.02394  0.1547  
##  Residual                0.56441  0.7513  
## Number of obs: 3868, groups:  beep_id, 246; stud_ID, 232; teacher_ID1, 12
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 1.634e+00  5.621e-02 1.332e+01  29.070 1.94e-13 ***
## interest_c  3.948e-01  1.493e-02 3.644e+03  26.451  < 2e-16 ***
## anychoice   8.196e-02  3.079e-02 3.668e+03   2.662   0.0078 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) intrs_
## interest_c  0.020       
## anychoice  -0.309 -0.064
sjstats::icc(M4)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: learning ~ interest_c + anychoice + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.043582
##       ICC (stud_ID): 0.168960
##   ICC (teacher_ID1): 0.032036

Models with just all choices and interest as predictors

Engagement

M1a <- lmer(engagement_three ~ 
             interest_c + 
             ch_who + 
             ch_howdo + 
             ch_mat + 
             ch_time + 
             ch_other + 
             ch_framing +
             (1|stud_ID) + 
             (1|teacher_ID1) + 
             (1|beep_id), 
           data = SciMo_All)
summary(M1a, ddf="Kenward-Roger")
## Linear mixed model fit by REML. t-tests use Kenward-Roger's method [
## lmerModLmerTest]
## Formula: engagement_three ~ interest_c + ch_who + ch_howdo + ch_mat +  
##     ch_time + ch_other + ch_framing + (1 | stud_ID) + (1 | teacher_ID1) +  
##     (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 6886.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4267 -0.6108  0.0268  0.6408  3.9302 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  beep_id     (Intercept) 0.01474  0.1214  
##  stud_ID     (Intercept) 0.10410  0.3226  
##  teacher_ID1 (Intercept) 0.01298  0.1139  
##  Residual                0.29368  0.5419  
## Number of obs: 3883, groups:  beep_id, 246; stud_ID, 232; teacher_ID1, 12
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    1.59540    0.04245   12.30285  37.584 4.51e-14 ***
## interest_c     0.37387    0.01090 3749.04937  34.288  < 2e-16 ***
## ch_who        -0.01965    0.03431 3366.17147  -0.573 0.566962    
## ch_howdo       0.07245    0.02809 3823.77051   2.580 0.009924 ** 
## ch_mat         0.06898    0.03300 3860.75524   2.090 0.036665 *  
## ch_time        0.10604    0.03056 3857.22413   3.470 0.000526 ***
## ch_other      -0.02283    0.02962 3798.55708  -0.771 0.440882    
## ch_framing     0.02679    0.02850 3836.19461   0.940 0.347286    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) intrs_ ch_who ch_hwd ch_mat ch_tim ch_thr
## interest_c  0.018                                          
## ch_who     -0.046 -0.002                                   
## ch_howdo   -0.082 -0.027 -0.110                            
## ch_mat     -0.052 -0.060 -0.136 -0.228                     
## ch_time    -0.065 -0.010 -0.136 -0.152 -0.107              
## ch_other   -0.143 -0.039  0.010  0.029  0.041  0.024       
## ch_framing -0.111 -0.016 -0.059 -0.063 -0.057 -0.017  0.058
sjstats::icc(M1a)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: engagement_three ~ interest_c + ch_who + ch_howdo + ch_mat + ch_time + ch_other + ch_framing + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.034639
##       ICC (stud_ID): 0.244650
##   ICC (teacher_ID1): 0.030501

Positive Affect

M2a <- lmer(posaffect ~ 
             interest_c + 
             ch_who + 
             ch_howdo + 
             ch_mat + 
             ch_time + 
             ch_other + 
             ch_framing +
             (1|stud_ID) + 
             (1|teacher_ID1) + 
             (1|beep_id), 
           data = SciMo_All)
summary(M2a, ddf="Kenward-Roger")
## Linear mixed model fit by REML. t-tests use Kenward-Roger's method [
## lmerModLmerTest]
## Formula: posaffect ~ interest_c + ch_who + ch_howdo + ch_mat + ch_time +  
##     ch_other + ch_framing + (1 | stud_ID) + (1 | teacher_ID1) +  
##     (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 7558
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0220 -0.6179 -0.0988  0.5432  4.2920 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev.
##  beep_id     (Intercept) 0.0033028 0.05747 
##  stud_ID     (Intercept) 0.2715190 0.52107 
##  teacher_ID1 (Intercept) 0.0002614 0.01617 
##  Residual                0.3466757 0.58879 
## Number of obs: 3872, groups:  beep_id, 246; stud_ID, 232; teacher_ID1, 12
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 1.024e+00  3.808e-02 1.228e+01  26.898 2.73e-12 ***
## interest_c  2.666e-01  1.175e-02 3.375e+03  22.692  < 2e-16 ***
## ch_who      9.416e-02  3.614e-02 2.712e+03   2.606  0.00922 ** 
## ch_howdo    6.610e-03  3.059e-02 3.771e+03   0.216  0.82891    
## ch_mat      3.289e-02  3.566e-02 3.666e+03   0.922  0.35636    
## ch_time     3.159e-02  3.312e-02 3.748e+03   0.954  0.34025    
## ch_other    5.100e-02  3.253e-02 3.835e+03   1.568  0.11702    
## ch_framing  6.128e-03  3.129e-02 3.833e+03   0.196  0.84473    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) intrs_ ch_who ch_hwd ch_mat ch_tim ch_thr
## interest_c  0.019                                          
## ch_who     -0.045  0.001                                   
## ch_howdo   -0.098 -0.023 -0.113                            
## ch_mat     -0.061 -0.070 -0.136 -0.235                     
## ch_time    -0.079  0.000 -0.142 -0.149 -0.104              
## ch_other   -0.173 -0.029  0.002  0.030  0.044  0.023       
## ch_framing -0.134 -0.010 -0.063 -0.057 -0.053 -0.012  0.062
sjstats::icc(M2a)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: posaffect ~ interest_c + ch_who + ch_howdo + ch_mat + ch_time + ch_other + ch_framing + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.005312
##       ICC (stud_ID): 0.436695
##   ICC (teacher_ID1): 0.000420

Engagement

M3a <- lmer(negaffect ~ 
             interest_c + 
             ch_who + 
             ch_howdo + 
             ch_mat + 
             ch_time + 
             ch_other + 
             ch_framing +
             (1|stud_ID) + 
             (1|teacher_ID1) + 
             (1|beep_id), 
           data = SciMo_All)
summary(M3a, ddf="Kenward-Roger")
## Linear mixed model fit by REML. t-tests use Kenward-Roger's method [
## lmerModLmerTest]
## Formula: negaffect ~ interest_c + ch_who + ch_howdo + ch_mat + ch_time +  
##     ch_other + ch_framing + (1 | stud_ID) + (1 | teacher_ID1) +  
##     (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 7672
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5976 -0.5471 -0.1670  0.3577  4.7035 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  beep_id     (Intercept) 0.01369  0.1170  
##  stud_ID     (Intercept) 0.20153  0.4489  
##  teacher_ID1 (Intercept) 0.01847  0.1359  
##  Residual                0.35532  0.5961  
## Number of obs: 3872, groups:  beep_id, 246; stud_ID, 232; teacher_ID1, 12
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    0.57691    0.05227   11.99904  11.037 1.22e-07 ***
## interest_c    -0.07740    0.01210 3680.15527  -6.395 1.81e-10 ***
## ch_who        -0.03959    0.03770 3186.99150  -1.050   0.2937    
## ch_howdo       0.01307    0.03112 3781.78232   0.420   0.6746    
## ch_mat         0.02833    0.03651 3800.86182   0.776   0.4379    
## ch_time        0.06595    0.03382 3804.77447   1.950   0.0513 .  
## ch_other      -0.05806    0.03304 3859.53222  -1.757   0.0789 .  
## ch_framing    -0.00924    0.03175 3844.33132  -0.291   0.7711    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) intrs_ ch_who ch_hwd ch_mat ch_tim ch_thr
## interest_c  0.016                                          
## ch_who     -0.039 -0.001                                   
## ch_howdo   -0.075 -0.023 -0.108                            
## ch_mat     -0.048 -0.062 -0.136 -0.229                     
## ch_time    -0.059 -0.008 -0.138 -0.148 -0.106              
## ch_other   -0.129 -0.033  0.007  0.030  0.042  0.023       
## ch_framing -0.101 -0.013 -0.063 -0.058 -0.055 -0.012  0.061
sjstats::icc(M3a)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: negaffect ~ interest_c + ch_who + ch_howdo + ch_mat + ch_time + ch_other + ch_framing + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.023247
##       ICC (stud_ID): 0.342154
##   ICC (teacher_ID1): 0.031362

Learning

M4a <- lmer(learning ~ 
             interest_c + 
             ch_who + 
             ch_howdo + 
             ch_mat + 
             ch_time + 
             ch_other + 
             ch_framing +
             (1|stud_ID) + 
             (1|teacher_ID1) + 
             (1|beep_id), 
           data = SciMo_All)
summary(M4a, ddf="Kenward-Roger")
## Linear mixed model fit by REML. t-tests use Kenward-Roger's method [
## lmerModLmerTest]
## Formula: learning ~ interest_c + ch_who + ch_howdo + ch_mat + ch_time +  
##     ch_other + ch_framing + (1 | stud_ID) + (1 | teacher_ID1) +  
##     (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 9320.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6846 -0.6131  0.0350  0.6562  2.9827 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  beep_id     (Intercept) 0.03248  0.1802  
##  stud_ID     (Intercept) 0.12624  0.3553  
##  teacher_ID1 (Intercept) 0.02256  0.1502  
##  Residual                0.56554  0.7520  
## Number of obs: 3868, groups:  beep_id, 246; stud_ID, 232; teacher_ID1, 12
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    1.65993    0.05429   12.54423  30.577 3.69e-13 ***
## interest_c     0.39523    0.01497 3653.73119  26.396  < 2e-16 ***
## ch_who        -0.04327    0.04750 3456.90897  -0.911   0.3624    
## ch_howdo       0.03307    0.03867 3818.50050   0.855   0.3926    
## ch_mat         0.03239    0.04547 3835.27243   0.712   0.4763    
## ch_time       -0.01686    0.04207 3854.49148  -0.401   0.6887    
## ch_other       0.07543    0.04046 3560.62557   1.864   0.0624 .  
## ch_framing     0.01711    0.03904 3702.76969   0.438   0.6612    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) intrs_ ch_who ch_hwd ch_mat ch_tim ch_thr
## interest_c  0.021                                          
## ch_who     -0.051 -0.001                                   
## ch_howdo   -0.086 -0.028 -0.111                            
## ch_mat     -0.055 -0.060 -0.136 -0.231                     
## ch_time    -0.068 -0.013 -0.137 -0.158 -0.107              
## ch_other   -0.153 -0.042  0.012  0.029  0.041  0.023       
## ch_framing -0.117 -0.021 -0.057 -0.071 -0.063 -0.021  0.056
sjstats::icc(M4a)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: learning ~ interest_c + ch_who + ch_howdo + ch_mat + ch_time + ch_other + ch_framing + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.043492
##       ICC (stud_ID): 0.169040
##   ICC (teacher_ID1): 0.030204

Any Choice & Interest Models

Any choice predicting engagement

M1_1 <- lmer(engagement_three ~ interest_fun_c +
             interest_c + 
             anychoice + 
             interest_c*anychoice +
             interest_fun_c*anychoice +
             female + 
             minority +  
             (1|stud_ID) + (1|teacher_ID1) + (1|beep_id), data = SciMo_All)
summary(M1_1, ddf="Kenward-Roger")
## Linear mixed model fit by REML. t-tests use Kenward-Roger's method [
## lmerModLmerTest]
## Formula: engagement_three ~ interest_fun_c + interest_c + anychoice +  
##     interest_c * anychoice + interest_fun_c * anychoice + female +  
##     minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 6848.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3607 -0.6155  0.0288  0.6424  4.0077 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  beep_id     (Intercept) 0.01601  0.1265  
##  stud_ID     (Intercept) 0.09053  0.3009  
##  teacher_ID1 (Intercept) 0.01025  0.1012  
##  Residual                0.29444  0.5426  
## Number of obs: 3867, groups:  beep_id, 246; stud_ID, 231; teacher_ID1, 12
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 1.66461    0.05343   38.15819  31.157  < 2e-16
## interest_fun_c              0.13903    0.03206  343.61634   4.336 1.91e-05
## interest_c                  0.39871    0.01559 3837.93155  25.576  < 2e-16
## anychoice                   0.08443    0.02254 3787.71798   3.746 0.000183
## female                     -0.03043    0.04470  222.29682  -0.681 0.496699
## minority                   -0.09235    0.04803  224.97017  -1.923 0.055779
## interest_c:anychoice       -0.05179    0.01992 3787.15889  -2.600 0.009372
## interest_fun_c:anychoice    0.02695    0.02811 3714.50829   0.959 0.337615
##                             
## (Intercept)              ***
## interest_fun_c           ***
## interest_c               ***
## anychoice                ***
## female                      
## minority                 .  
## interest_c:anychoice     ** 
## interest_fun_c:anychoice    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) intr__ intrs_ anychc female minrty intr_:
## intrst_fn_c  0.014                                          
## interest_c   0.037 -0.121                                   
## anychoice   -0.216 -0.051 -0.065                            
## female      -0.364  0.098 -0.009 -0.001                     
## minority    -0.540 -0.043 -0.017 -0.043 -0.047              
## intrst_c:ny -0.029  0.073 -0.710  0.040  0.014  0.003       
## intrst_fn_: -0.018 -0.444  0.098  0.033 -0.012 -0.011 -0.163
ranova(M1_1, ddf="Kenward-Roger")
## ANOVA-like table for random-effects: Single term deletions
## 
## Model:
## engagement_three ~ interest_fun_c + interest_c + anychoice + 
##     female + minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 | 
##     beep_id) + interest_c:anychoice + interest_fun_c:anychoice
##                   npar  logLik    AIC    LRT Df Pr(>Chisq)    
## <none>              12 -3424.2 6872.5                         
## (1 | stud_ID)       11 -3689.4 7400.8 530.34  1  < 2.2e-16 ***
## (1 | teacher_ID1)   11 -3426.5 6875.1   4.57  1    0.03246 *  
## (1 | beep_id)       11 -3448.2 6918.3  47.83  1  4.645e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjstats::icc(M1_1)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: engagement_three ~ interest_fun_c + interest_c + anychoice + interest_c * anychoice + interest_fun_c * anychoice + female + minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.038939
##       ICC (stud_ID): 0.220147
##   ICC (teacher_ID1): 0.024916
sjPlot::sjp.int(M1_1, type = "eff", swap.pred = TRUE)
## Warning: 'sjPlot::sjp.int' is deprecated.
## Use 'plot_model' instead.
## See help("Deprecated")

#konfound::konfound(M1_1, `interest*choice`)
M1_1r<-r2glmm::r2beta(M1_1, method = "nsj")
M1_1r
##                     Effect   Rsq upper.CL lower.CL
## 1                    Model 0.306    0.329    0.285
## 3               interest_c 0.139    0.159    0.120
## 2           interest_fun_c 0.014    0.022    0.007
## 6                 minority 0.005    0.010    0.001
## 4                anychoice 0.004    0.009    0.001
## 7     interest_c:anychoice 0.002    0.005    0.000
## 5                   female 0.001    0.003    0.000
## 8 interest_fun_c:anychoice 0.000    0.002    0.000
MuMIn::r.squaredGLMM(M1_1)
## Warning: 'r.squaredGLMM' now calculates a revised statistic. See the help
## page.
##            R2m      R2c
## [1,] 0.3063495 0.503347
plot(M1_1r)

Any choice predicting positive affect

M2_2 <- lmer(posaffect ~ interest_fun_c +
             interest_c + 
             anychoice + 
             interest_c*anychoice + 
             interest_fun_c*anychoice +
             female + 
             minority +  
             (1|stud_ID) + (1|teacher_ID1) + (1|beep_id), data = SciMo_All)
summary(M2_2, ddf="Kenward-Roger")
## Linear mixed model fit by REML. t-tests use Kenward-Roger's method [
## lmerModLmerTest]
## Formula: 
## posaffect ~ interest_fun_c + interest_c + anychoice + interest_c *  
##     anychoice + interest_fun_c * anychoice + female + minority +  
##     (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 7529.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9753 -0.6137 -0.0919  0.5488  4.3577 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. 
##  beep_id     (Intercept) 3.245e-03 5.696e-02
##  stud_ID     (Intercept) 2.653e-01 5.151e-01
##  teacher_ID1 (Intercept) 1.350e-13 3.674e-07
##  Residual                3.477e-01 5.897e-01
## Number of obs: 3856, groups:  beep_id, 246; stud_ID, 231; teacher_ID1, 12
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 1.00760    0.06841   71.78645  14.729  < 2e-16
## interest_fun_c              0.10603    0.04811  271.23985   2.204  0.02839
## interest_c                  0.24960    0.01677 3538.07152  14.884  < 2e-16
## anychoice                   0.06410    0.02458 3648.54307   2.608  0.00914
## female                     -0.07512    0.07169  226.88372  -1.048  0.29581
## minority                    0.07739    0.07520  198.41024   1.029  0.30464
## interest_c:anychoice        0.02619    0.02158 3717.39838   1.214  0.22493
## interest_fun_c:anychoice    0.01119    0.03100 3835.77579   0.361  0.71811
##                             
## (Intercept)              ***
## interest_fun_c           *  
## interest_c               ***
## anychoice                ** 
## female                      
## minority                    
## interest_c:anychoice        
## interest_fun_c:anychoice    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) intr__ intrs_ anychc female minrty intr_:
## intrst_fn_c  0.031                                          
## interest_c   0.028 -0.083                                   
## anychoice   -0.176 -0.039 -0.060                            
## female      -0.467  0.087 -0.008  0.005                     
## minority    -0.660 -0.079 -0.007 -0.040 -0.045              
## intrst_c:ny -0.023  0.047 -0.710  0.041  0.008  0.001       
## intrst_fn_: -0.013 -0.327  0.092  0.036 -0.008 -0.010 -0.149
ranova(M2_2, ddf="Kenward-Roger")
## ANOVA-like table for random-effects: Single term deletions
## 
## Model:
## posaffect ~ interest_fun_c + interest_c + anychoice + female + 
##     minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id) + 
##     interest_c:anychoice + interest_fun_c:anychoice
##                   npar  logLik    AIC     LRT Df Pr(>Chisq)    
## <none>              12 -3764.9 7553.7                          
## (1 | stud_ID)       11 -4507.1 9036.3 1484.56  1     <2e-16 ***
## (1 | teacher_ID1)   11 -3764.9 7551.7    0.00  1     1.0000    
## (1 | beep_id)       11 -3765.9 7553.7    1.98  1     0.1592    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjstats::icc(M2_2)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: posaffect ~ interest_fun_c + interest_c + anychoice + interest_c * anychoice + interest_fun_c * anychoice + female + minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.005265
##       ICC (stud_ID): 0.430513
##   ICC (teacher_ID1): 0.000000
#sjPlot::sjp.int(M2_2, type = "eff")
#konfound::konfound(M2_2, `interest*choice`)
M2_2r<-r2glmm::r2beta(M2_2, method = "nsj")
M2_2r
##                     Effect   Rsq upper.CL lower.CL
## 1                    Model 0.140    0.161    0.122
## 3               interest_c 0.040    0.053    0.029
## 2           interest_fun_c 0.005    0.011    0.002
## 5                   female 0.002    0.006    0.000
## 6                 minority 0.002    0.006    0.000
## 4                anychoice 0.002    0.005    0.000
## 7     interest_c:anychoice 0.000    0.002    0.000
## 8 interest_fun_c:anychoice 0.000    0.001    0.000
MuMIn::r.squaredGLMM(M2_2)
##            R2m       R2c
## [1,] 0.1397748 0.5146424
#plot(M2_2r)

Any choice predicting negative affect

M3_3 <- lmer(negaffect ~ interest_fun_c +
             interest_c + 
             anychoice + 
             interest_c*anychoice + 
             interest_fun_c*anychoice +
             female + 
             minority +  
             (1|stud_ID) + (1|teacher_ID1) + (1|beep_id), data = SciMo_All)
summary(M3_3, ddf="Kenward-Roger")
## Linear mixed model fit by REML. t-tests use Kenward-Roger's method [
## lmerModLmerTest]
## Formula: 
## negaffect ~ interest_fun_c + interest_c + anychoice + interest_c *  
##     anychoice + interest_fun_c * anychoice + female + minority +  
##     (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 7643.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6069 -0.5470 -0.1662  0.3690  4.6213 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  beep_id     (Intercept) 0.01496  0.1223  
##  stud_ID     (Intercept) 0.18960  0.4354  
##  teacher_ID1 (Intercept) 0.02350  0.1533  
##  Residual                0.35603  0.5967  
## Number of obs: 3856, groups:  beep_id, 246; stud_ID, 231; teacher_ID1, 12
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)               5.260e-01  7.546e-02  3.504e+01   6.971 4.14e-08
## interest_fun_c           -5.481e-02  4.298e-02  3.029e+02  -1.275  0.20325
## interest_c               -7.831e-02  1.725e-02  3.760e+03  -4.540 5.81e-06
## anychoice                -6.446e-03  2.512e-02  3.833e+03  -0.257  0.79749
## female                    1.861e-01  6.228e-02  2.221e+02   2.988  0.00312
## minority                 -4.863e-02  6.706e-02  2.259e+02  -0.725  0.46905
## interest_c:anychoice      8.123e-03  2.203e-02  3.736e+03   0.369  0.71232
## interest_fun_c:anychoice -2.005e-02  3.141e-02  3.822e+03  -0.638  0.52338
##                             
## (Intercept)              ***
## interest_fun_c              
## interest_c               ***
## anychoice                   
## female                   ** 
## minority                    
## interest_c:anychoice        
## interest_fun_c:anychoice    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) intr__ intrs_ anychc female minrty intr_:
## intrst_fn_c  0.011                                          
## interest_c   0.028 -0.098                                   
## anychoice   -0.170 -0.045 -0.065                            
## female      -0.358  0.096 -0.006 -0.001                     
## minority    -0.539 -0.046 -0.013 -0.034 -0.047              
## intrst_c:ny -0.023  0.057 -0.707  0.043  0.011  0.002       
## intrst_fn_: -0.015 -0.369  0.092  0.036 -0.009 -0.010 -0.154
ranova(M3_3, ddf="Kenward-Roger")
## ANOVA-like table for random-effects: Single term deletions
## 
## Model:
## negaffect ~ interest_fun_c + interest_c + anychoice + female + 
##     minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id) + 
##     interest_c:anychoice + interest_fun_c:anychoice
##                   npar  logLik    AIC    LRT Df Pr(>Chisq)    
## <none>              12 -3821.7 7667.4                         
## (1 | stud_ID)       11 -4307.0 8636.0 970.61  1  < 2.2e-16 ***
## (1 | teacher_ID1)   11 -3825.5 7672.9   7.50  1   0.006161 ** 
## (1 | beep_id)       11 -3836.6 7695.2  29.75  1  4.926e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjstats::icc(M3_3)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: negaffect ~ interest_fun_c + interest_c + anychoice + interest_c * anychoice + interest_fun_c * anychoice + female + minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.025610
##       ICC (stud_ID): 0.324604
##   ICC (teacher_ID1): 0.040239
#sjPlot::sjp.int(M3_3, type = "eff")
#konfound::konfound(M3_3, `interest*choice`)
M3_3r<-r2glmm::r2beta(M3_3, method = "nsj")
M3_3r
##                     Effect   Rsq upper.CL lower.CL
## 1                    Model 0.035    0.049    0.026
## 5                   female 0.014    0.023    0.008
## 3               interest_c 0.004    0.009    0.001
## 2           interest_fun_c 0.002    0.005    0.000
## 6                 minority 0.001    0.004    0.000
## 8 interest_fun_c:anychoice 0.000    0.002    0.000
## 7     interest_c:anychoice 0.000    0.001    0.000
## 4                anychoice 0.000    0.001    0.000
MuMIn::r.squaredGLMM(M3_3)
##             R2m       R2c
## [1,] 0.03527226 0.4119527
#plot(M3_3r)

Any choice predicting learning

M4_4 <- lmer(learning ~ interest_fun_c +
             interest_c + 
             anychoice + 
             interest_c*anychoice + 
             interest_fun_c*anychoice +
             female + 
             minority +  
             (1|stud_ID) + (1|teacher_ID1) + (1|beep_id), data = SciMo_All)
summary(M4_4, ddf="Kenward-Roger")
## Linear mixed model fit by REML. t-tests use Kenward-Roger's method [
## lmerModLmerTest]
## Formula: 
## learning ~ interest_fun_c + interest_c + anychoice + interest_c *  
##     anychoice + interest_fun_c * anychoice + female + minority +  
##     (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 9258.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6249 -0.6175  0.0324  0.6510  3.0557 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  beep_id     (Intercept) 0.03263  0.1806  
##  stud_ID     (Intercept) 0.11232  0.3351  
##  teacher_ID1 (Intercept) 0.01790  0.1338  
##  Residual                0.56497  0.7516  
## Number of obs: 3852, groups:  beep_id, 246; stud_ID, 231; teacher_ID1, 12
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 1.71818    0.06579   34.45083  26.115  < 2e-16
## interest_fun_c              0.13967    0.03885  378.83162   3.595 0.000367
## interest_c                  0.40249    0.02149 3828.62446  18.729  < 2e-16
## anychoice                   0.07834    0.03081 3586.17980   2.543 0.011033
## female                      0.01315    0.05216  221.16253   0.252 0.801199
## minority                   -0.13579    0.05613  224.02698  -2.419 0.016350
## interest_c:anychoice       -0.02420    0.02749 3801.87899  -0.881 0.378644
## interest_fun_c:anychoice    0.04373    0.03828 3442.92245   1.142 0.253448
##                             
## (Intercept)              ***
## interest_fun_c           ***
## interest_c               ***
## anychoice                *  
## female                      
## minority                 *  
## interest_c:anychoice        
## interest_fun_c:anychoice    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) intr__ intrs_ anychc female minrty intr_:
## intrst_fn_c  0.014                                          
## interest_c   0.043 -0.141                                   
## anychoice   -0.241 -0.056 -0.065                            
## female      -0.343  0.101 -0.010 -0.001                     
## minority    -0.509 -0.037 -0.023 -0.048 -0.048              
## intrst_c:ny -0.033  0.088 -0.713  0.037  0.017  0.005       
## intrst_fn_: -0.019 -0.501  0.106  0.033 -0.015 -0.012 -0.173
ranova(M4_4, ddf="Kenward-Roger")
## ANOVA-like table for random-effects: Single term deletions
## 
## Model:
## learning ~ interest_fun_c + interest_c + anychoice + female + 
##     minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id) + 
##     interest_c:anychoice + interest_fun_c:anychoice
##                   npar  logLik    AIC    LRT Df Pr(>Chisq)    
## <none>              12 -4629.2 9282.5                         
## (1 | stud_ID)       11 -4787.4 9596.8 316.36  1  < 2.2e-16 ***
## (1 | teacher_ID1)   11 -4632.2 9286.3   5.88  1    0.01534 *  
## (1 | beep_id)       11 -4655.9 9333.8  53.34  1  2.805e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjstats::icc(M4_4)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: learning ~ interest_fun_c + interest_c + anychoice + interest_c * anychoice + interest_fun_c * anychoice + female + minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.044832
##       ICC (stud_ID): 0.154327
##   ICC (teacher_ID1): 0.024589
#sjPlot::sjp.int(M4_4, type = "eff")
#konfound::konfound(M4_4, `interest*choice`)
M4_4r<-r2glmm::r2beta(M4_4, method = "nsj")
M4_4r
##                     Effect   Rsq upper.CL lower.CL
## 1                    Model 0.215    0.238    0.195
## 3               interest_c 0.085    0.102    0.069
## 2           interest_fun_c 0.008    0.014    0.003
## 6                 minority 0.006    0.011    0.002
## 4                anychoice 0.002    0.006    0.000
## 8 interest_fun_c:anychoice 0.000    0.003    0.000
## 7     interest_c:anychoice 0.000    0.002    0.000
## 5                   female 0.000    0.002    0.000
MuMIn::r.squaredGLMM(M4_4)
##            R2m       R2c
## [1,] 0.2151071 0.3907257
#plot(M4_4r)

All Choices and Interest Models

All choices predicting engagement

M11<-lmer(engagement_three ~ scale(interesfun1, scale=FALSE) + 
            interest_c + 
            ch_who + 
            ch_howdo + 
            ch_mat + 
            ch_time + 
            ch_other + 
            ch_framing +
            female + 
            minority + 
            (1|stud_ID) + (1|teacher_ID1) + (1|beep_id), data = SciMo_All)
summary(M11, ddf="Kenward-Roger")
## Linear mixed model fit by REML. t-tests use Kenward-Roger's method [
## lmerModLmerTest]
## Formula: 
## engagement_three ~ scale(interesfun1, scale = FALSE) + interest_c +  
##     ch_who + ch_howdo + ch_mat + ch_time + ch_other + ch_framing +  
##     female + minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 |  
##     beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 6848.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3662 -0.6093  0.0306  0.6406  3.9728 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  beep_id     (Intercept) 0.01492  0.1221  
##  stud_ID     (Intercept) 0.09115  0.3019  
##  teacher_ID1 (Intercept) 0.01039  0.1019  
##  Residual                0.29400  0.5422  
## Number of obs: 3867, groups:  beep_id, 246; stud_ID, 231; teacher_ID1, 12
## 
## Fixed effects:
##                                     Estimate Std. Error         df t value
## (Intercept)                          1.67183    0.05315   36.75952  31.454
## scale(interesfun1, scale = FALSE)    0.15005    0.02884  232.16493   5.203
## interest_c                           0.36868    0.01098 3741.29051  33.563
## ch_who                              -0.01842    0.03433 3364.18289  -0.536
## ch_howdo                             0.07140    0.02804 3814.17379   2.546
## ch_mat                               0.06895    0.03303 3843.97002   2.088
## ch_time                              0.10059    0.03053 3846.00136   3.295
## ch_other                            -0.02351    0.02951 3737.46265  -0.797
## ch_framing                           0.02289    0.02847 3800.68762   0.804
## female                              -0.02871    0.04485  222.56190  -0.640
## minority                            -0.09195    0.04825  226.22315  -1.906
##                                   Pr(>|t|)    
## (Intercept)                        < 2e-16 ***
## scale(interesfun1, scale = FALSE) 4.31e-07 ***
## interest_c                         < 2e-16 ***
## ch_who                            0.591654    
## ch_howdo                          0.010930 *  
## ch_mat                            0.036903 *  
## ch_time                           0.000993 ***
## ch_other                          0.425705    
## ch_framing                        0.421425    
## female                            0.522742    
## minority                          0.057962 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) s(1s=F intrs_ ch_who ch_hwd ch_mat ch_tim ch_thr ch_frm
## s(1,s=FALSE  0.006                                                        
## interest_c   0.022 -0.120                                                 
## ch_who      -0.042  0.002 -0.002                                          
## ch_howdo    -0.063 -0.001 -0.027 -0.111                                   
## ch_mat      -0.010 -0.024 -0.056 -0.133 -0.229                            
## ch_time     -0.060 -0.027 -0.008 -0.137 -0.154 -0.108                     
## ch_other    -0.103 -0.015 -0.037  0.010  0.029  0.041  0.025              
## ch_framing  -0.074 -0.029 -0.011 -0.059 -0.065 -0.056 -0.018  0.058       
## female      -0.364  0.104  0.003  0.007 -0.001  0.001 -0.017 -0.030  0.015
## minority    -0.549 -0.053 -0.019  0.004 -0.004 -0.056  0.025  0.000 -0.037
##             female
## s(1,s=FALSE       
## interest_c        
## ch_who            
## ch_howdo          
## ch_mat            
## ch_time           
## ch_other          
## ch_framing        
## female            
## minority    -0.048
ranova(M11, ddf="Kenward-Roger")
## ANOVA-like table for random-effects: Single term deletions
## 
## Model:
## engagement_three ~ scale(interesfun1, scale = FALSE) + interest_c + 
##     ch_who + ch_howdo + ch_mat + ch_time + ch_other + ch_framing + 
##     female + minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 | 
##     beep_id)
##                   npar  logLik    AIC    LRT Df Pr(>Chisq)    
## <none>              15 -3424.1 6878.2                         
## (1 | stud_ID)       14 -3691.5 7411.1 534.90  1  < 2.2e-16 ***
## (1 | teacher_ID1)   14 -3426.4 6880.9   4.71  1    0.02992 *  
## (1 | beep_id)       14 -3445.2 6918.4  42.25  1  8.033e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjstats::icc(M11)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: engagement_three ~ scale(interesfun1, scale = FALSE) + interest_c + ch_who + ch_howdo + ch_mat + ch_time + ch_other + ch_framing + female + minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.036339
##       ICC (stud_ID): 0.222073
##   ICC (teacher_ID1): 0.025306
#sjPlot::sjp.int(M11, type = "eff")
M11r<-r2glmm::r2beta(M11, method = "nsj")
M11r
##                               Effect   Rsq upper.CL lower.CL
## 1                              Model 0.310    0.333    0.289
## 3                         interest_c 0.236    0.258    0.214
## 2  scale(interesfun1, scale = FALSE) 0.031    0.043    0.021
## 11                          minority 0.005    0.010    0.001
## 7                            ch_time 0.003    0.007    0.000
## 5                           ch_howdo 0.002    0.005    0.000
## 6                             ch_mat 0.001    0.004    0.000
## 10                            female 0.000    0.003    0.000
## 8                           ch_other 0.000    0.002    0.000
## 9                         ch_framing 0.000    0.002    0.000
## 4                             ch_who 0.000    0.002    0.000
MuMIn::r.squaredGLMM(M11)
##            R2m       R2c
## [1,] 0.3097681 0.5055992
#plot(M11r)

All choices predicting positive affect

M22<-lmer(posaffect ~ scale(interesfun1, scale=FALSE) + 
            interest_c + 
            ch_who + 
            ch_howdo + 
            ch_mat + 
            ch_time + 
            ch_other + 
            ch_framing +
            female + 
            minority + 
            (1|stud_ID) + (1|teacher_ID1) + (1|beep_id), data = SciMo_All)
summary(M22, ddf="Kenward-Roger")
## Linear mixed model fit by REML. t-tests use Kenward-Roger's method [
## lmerModLmerTest]
## Formula: posaffect ~ scale(interesfun1, scale = FALSE) + interest_c +  
##     ch_who + ch_howdo + ch_mat + ch_time + ch_other + ch_framing +  
##     female + minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 |  
##     beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 7537.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9917 -0.6176 -0.0992  0.5450  4.3077 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  beep_id     (Intercept) 0.003096 0.05565 
##  stud_ID     (Intercept) 0.264993 0.51477 
##  teacher_ID1 (Intercept) 0.000000 0.00000 
##  Residual                0.347612 0.58959 
## Number of obs: 3856, groups:  beep_id, 246; stud_ID, 231; teacher_ID1, 12
## 
## Fixed effects:
##                                     Estimate Std. Error         df t value
## (Intercept)                        1.015e+00  6.796e-02  6.989e+01  14.940
## scale(interesfun1, scale = FALSE)  1.107e-01  4.551e-02  2.198e+02   2.432
## interest_c                         2.634e-01  1.183e-02  3.341e+03  22.266
## ch_who                             9.498e-02  3.619e-02  2.683e+03   2.624
## ch_howdo                           5.801e-03  3.062e-02  3.757e+03   0.189
## ch_mat                             3.132e-02  3.576e-02  3.642e+03   0.876
## ch_time                            2.944e-02  3.316e-02  3.730e+03   0.888
## ch_other                           5.076e-02  3.256e-02  3.813e+03   1.559
## ch_framing                         2.604e-03  3.137e-02  3.815e+03   0.083
## female                            -7.689e-02  7.167e-02  2.269e+02  -1.073
## minority                           7.703e-02  7.521e-02  1.989e+02   1.024
##                                   Pr(>|t|)    
## (Intercept)                        < 2e-16 ***
## scale(interesfun1, scale = FALSE)  0.01582 *  
## interest_c                         < 2e-16 ***
## ch_who                             0.00873 ** 
## ch_howdo                           0.84974    
## ch_mat                             0.38123    
## ch_time                            0.37471    
## ch_other                           0.11905    
## ch_framing                         0.93385    
## female                             0.28444    
## minority                           0.30702    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) s(1s=F intrs_ ch_who ch_hwd ch_mat ch_tim ch_thr ch_frm
## s(1,s=FALSE  0.028                                                        
## interest_c   0.015 -0.080                                                 
## ch_who      -0.023 -0.003  0.001                                          
## ch_howdo    -0.056  0.000 -0.023 -0.114                                   
## ch_mat      -0.006 -0.013 -0.068 -0.132 -0.236                            
## ch_time     -0.047 -0.024  0.002 -0.143 -0.148 -0.104                     
## ch_other    -0.084 -0.011 -0.028  0.002  0.030  0.045  0.024              
## ch_framing  -0.061 -0.020 -0.006 -0.063 -0.057 -0.052 -0.012  0.063       
## female      -0.468  0.089 -0.004  0.007  0.002  0.002 -0.010 -0.016  0.009
## minority    -0.666 -0.087 -0.006 -0.009  0.000 -0.043  0.010 -0.008 -0.028
##             female
## s(1,s=FALSE       
## interest_c        
## ch_who            
## ch_howdo          
## ch_mat            
## ch_time           
## ch_other          
## ch_framing        
## female            
## minority    -0.046
ranova(M22, ddf="Kenward-Roger")
## ANOVA-like table for random-effects: Single term deletions
## 
## Model:
## posaffect ~ scale(interesfun1, scale = FALSE) + interest_c + 
##     ch_who + ch_howdo + ch_mat + ch_time + ch_other + ch_framing + 
##     female + minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 | 
##     beep_id)
##                   npar  logLik    AIC     LRT Df Pr(>Chisq)    
## <none>              15 -3768.8 7567.5                          
## (1 | stud_ID)       14 -4498.8 9025.5 1459.98  1     <2e-16 ***
## (1 | teacher_ID1)   14 -3768.8 7565.5    0.00  1     1.0000    
## (1 | beep_id)       14 -3769.7 7567.3    1.81  1     0.1783    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjstats::icc(M22)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: posaffect ~ scale(interesfun1, scale = FALSE) + interest_c + ch_who + ch_howdo + ch_mat + ch_time + ch_other + ch_framing + female + minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.005029
##       ICC (stud_ID): 0.430392
##   ICC (teacher_ID1): 0.000000
#sjPlot::sjp.int(M22, type = "eff")
M22r<-r2glmm::r2beta(M22, method = "nsj")
M22r
##                               Effect   Rsq upper.CL lower.CL
## 1                              Model 0.140    0.162    0.123
## 3                         interest_c 0.095    0.113    0.078
## 2  scale(interesfun1, scale = FALSE) 0.012    0.019    0.006
## 10                            female 0.002    0.006    0.000
## 11                          minority 0.002    0.006    0.000
## 4                             ch_who 0.001    0.005    0.000
## 8                           ch_other 0.001    0.003    0.000
## 6                             ch_mat 0.000    0.002    0.000
## 7                            ch_time 0.000    0.002    0.000
## 5                           ch_howdo 0.000    0.001    0.000
## 9                         ch_framing 0.000    0.001    0.000
MuMIn::r.squaredGLMM(M22)
##            R2m      R2c
## [1,] 0.1403908 0.514683
#plot(M22r)

All choices predicting negative affect

M33<-lmer(negaffect ~ interest_fun_c + 
            interest_c + 
            ch_who + 
            ch_howdo + 
            ch_mat + 
            ch_time + 
            ch_other + 
            ch_framing +
            female + 
            minority + 
            (1|stud_ID) + (1|teacher_ID1) + (1|beep_id), data = SciMo_All)
summary(M33, ddf="Kenward-Roger")
## Linear mixed model fit by REML. t-tests use Kenward-Roger's method [
## lmerModLmerTest]
## Formula: negaffect ~ interest_fun_c + interest_c + ch_who + ch_howdo +  
##     ch_mat + ch_time + ch_other + ch_framing + female + minority +  
##     (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 7647.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5640 -0.5473 -0.1643  0.3689  4.7125 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  beep_id     (Intercept) 0.01365  0.1168  
##  stud_ID     (Intercept) 0.19049  0.4364  
##  teacher_ID1 (Intercept) 0.02292  0.1514  
##  Residual                0.35614  0.5968  
## Number of obs: 3856, groups:  beep_id, 246; stud_ID, 231; teacher_ID1, 12
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     5.221e-01  7.481e-02  3.478e+01   6.979 4.20e-08 ***
## interest_fun_c -6.729e-02  4.005e-02  2.305e+02  -1.680  0.09429 .  
## interest_c     -7.474e-02  1.220e-02  3.653e+03  -6.126 9.97e-10 ***
## ch_who         -3.940e-02  3.778e-02  3.170e+03  -1.043  0.29707    
## ch_howdo        1.387e-02  3.114e-02  3.770e+03   0.445  0.65601    
## ch_mat          3.009e-02  3.661e-02  3.781e+03   0.822  0.41126    
## ch_time         6.587e-02  3.386e-02  3.790e+03   1.946  0.05177 .  
## ch_other       -5.940e-02  3.304e-02  3.839e+03  -1.798  0.07231 .  
## ch_framing     -5.935e-03  3.182e-02  3.826e+03  -0.187  0.85203    
## female          1.865e-01  6.243e-02  2.224e+02   2.987  0.00313 ** 
## minority       -5.106e-02  6.725e-02  2.267e+02  -0.759  0.44847    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) intr__ intrs_ ch_who ch_hwd ch_mat ch_tim ch_thr ch_frm
## intrst_fn_c  0.005                                                        
## interest_c   0.016 -0.096                                                 
## ch_who      -0.032  0.002 -0.001                                          
## ch_howdo    -0.051 -0.003 -0.022 -0.109                                   
## ch_mat      -0.009 -0.018 -0.060 -0.133 -0.229                            
## ch_time     -0.047 -0.023 -0.006 -0.138 -0.148 -0.106                     
## ch_other    -0.082 -0.013 -0.032  0.007  0.030  0.042  0.024              
## ch_framing  -0.060 -0.025 -0.008 -0.063 -0.058 -0.053 -0.013  0.061       
## female      -0.361  0.100  0.002  0.006  0.000  0.001 -0.014 -0.025  0.011
## minority    -0.547 -0.053 -0.014  0.004 -0.002 -0.046  0.020  0.000 -0.029
##             female
## intrst_fn_c       
## interest_c        
## ch_who            
## ch_howdo          
## ch_mat            
## ch_time           
## ch_other          
## ch_framing        
## female            
## minority    -0.048
ranova(M33, ddf="Kenward-Roger")
## ANOVA-like table for random-effects: Single term deletions
## 
## Model:
## negaffect ~ interest_fun_c + interest_c + ch_who + ch_howdo + 
##     ch_mat + ch_time + ch_other + ch_framing + female + minority + 
##     (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
##                   npar  logLik    AIC    LRT Df Pr(>Chisq)    
## <none>              15 -3823.8 7677.6                         
## (1 | stud_ID)       14 -4309.9 8647.8 972.21  1  < 2.2e-16 ***
## (1 | teacher_ID1)   14 -3827.4 7682.8   7.25  1   0.007102 ** 
## (1 | beep_id)       14 -3836.4 7700.8  25.19  1  5.207e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjstats::icc(M33)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: negaffect ~ interest_fun_c + interest_c + ch_who + ch_howdo + ch_mat + ch_time + ch_other + ch_framing + female + minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.023405
##       ICC (stud_ID): 0.326624
##   ICC (teacher_ID1): 0.039301
#sjPlot::sjp.int(M33, type = "eff")
M33r<-r2glmm::r2beta(M33, method = "nsj")
M33r
##            Effect   Rsq upper.CL lower.CL
## 1           Model 0.037    0.052    0.029
## 10         female 0.014    0.023    0.008
## 3      interest_c 0.009    0.016    0.004
## 2  interest_fun_c 0.005    0.010    0.001
## 11       minority 0.001    0.004    0.000
## 8        ch_other 0.001    0.004    0.000
## 7         ch_time 0.001    0.004    0.000
## 4          ch_who 0.000    0.002    0.000
## 6          ch_mat 0.000    0.002    0.000
## 5        ch_howdo 0.000    0.001    0.000
## 9      ch_framing 0.000    0.001    0.000
MuMIn::r.squaredGLMM(M33)
##            R2m       R2c
## [1,] 0.0373937 0.4121658
#plot(M33r)

All choices predicting learning

M44<-lmer(learning ~ scale(interesfun1, scale=FALSE) + 
            interest_c + 
            ch_who + 
            ch_howdo + 
            ch_mat + 
            ch_time + 
            ch_other + 
            ch_framing +
            female + 
            minority + 
            (1|stud_ID) + (1|teacher_ID1) + (1|beep_id), data = SciMo_All)
summary(M44, ddf="Kenward-Roger")
## Linear mixed model fit by REML. t-tests use Kenward-Roger's method [
## lmerModLmerTest]
## Formula: 
## learning ~ scale(interesfun1, scale = FALSE) + interest_c + ch_who +  
##     ch_howdo + ch_mat + ch_time + ch_other + ch_framing + female +  
##     minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
##    Data: SciMo_All
## 
## REML criterion at convergence: 9273.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6543 -0.6133  0.0360  0.6537  3.0523 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  beep_id     (Intercept) 0.03261  0.1806  
##  stud_ID     (Intercept) 0.11154  0.3340  
##  teacher_ID1 (Intercept) 0.01627  0.1276  
##  Residual                0.56621  0.7525  
## Number of obs: 3852, groups:  beep_id, 246; stud_ID, 231; teacher_ID1, 12
## 
## Fixed effects:
##                                     Estimate Std. Error         df t value
## (Intercept)                          1.74575    0.06395   34.27754  27.299
## scale(interesfun1, scale = FALSE)    0.16417    0.03358  232.42143   4.889
## interest_c                           0.38982    0.01511 3680.52987  25.790
## ch_who                              -0.04319    0.04749 3443.45517  -0.909
## ch_howdo                             0.03290    0.03859 3796.66108   0.853
## ch_mat                               0.03229    0.04550 3806.43100   0.710
## ch_time                             -0.02583    0.04202 3832.29698  -0.615
## ch_other                             0.07047    0.04028 3458.35730   1.749
## ch_framing                           0.01366    0.03898 3641.40146   0.350
## female                               0.01206    0.05207  221.71350   0.232
## minority                            -0.13448    0.05608  225.81177  -2.398
##                                   Pr(>|t|)    
## (Intercept)                        < 2e-16 ***
## scale(interesfun1, scale = FALSE) 1.89e-06 ***
## interest_c                         < 2e-16 ***
## ch_who                              0.3632    
## ch_howdo                            0.3939    
## ch_mat                              0.4780    
## ch_time                             0.5388    
## ch_other                            0.0803 .  
## ch_framing                          0.7261    
## female                              0.8170    
## minority                            0.0173 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) s(1s=F intrs_ ch_who ch_hwd ch_mat ch_tim ch_thr ch_frm
## s(1,s=FALSE  0.005                                                        
## interest_c   0.027 -0.142                                                 
## ch_who      -0.050  0.003 -0.001                                          
## ch_howdo    -0.070 -0.002 -0.027 -0.113                                   
## ch_mat      -0.012 -0.028 -0.054 -0.134 -0.232                            
## ch_time     -0.068 -0.031 -0.010 -0.139 -0.160 -0.108                     
## ch_other    -0.118 -0.018 -0.040  0.012  0.029  0.040  0.024              
## ch_framing  -0.082 -0.034 -0.014 -0.057 -0.073 -0.061 -0.023  0.055       
## female      -0.349  0.108  0.004  0.008 -0.002  0.001 -0.020 -0.035  0.018
## minority    -0.528 -0.050 -0.025  0.007 -0.004 -0.065  0.032  0.001 -0.044
##             female
## s(1,s=FALSE       
## interest_c        
## ch_who            
## ch_howdo          
## ch_mat            
## ch_time           
## ch_other          
## ch_framing        
## female            
## minority    -0.050
ranova(M44, ddf="Kenward-Roger")
## ANOVA-like table for random-effects: Single term deletions
## 
## Model:
## learning ~ scale(interesfun1, scale = FALSE) + interest_c + ch_who + 
##     ch_howdo + ch_mat + ch_time + ch_other + ch_framing + female + 
##     minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
##                   npar  logLik    AIC     LRT Df Pr(>Chisq)    
## <none>              15 -4636.7 9303.4                          
## (1 | stud_ID)       14 -4792.4 9612.7 311.317  1  < 2.2e-16 ***
## (1 | teacher_ID1)   14 -4639.2 9306.4   4.993  1    0.02546 *  
## (1 | beep_id)       14 -4663.0 9354.0  52.585  1   4.12e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjstats::icc(M44)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: learning ~ scale(interesfun1, scale = FALSE) + interest_c + ch_who + ch_howdo + ch_mat + ch_time + ch_other + ch_framing + female + minority + (1 | stud_ID) + (1 | teacher_ID1) + (1 | beep_id)
## 
##       ICC (beep_id): 0.044876
##       ICC (stud_ID): 0.153507
##   ICC (teacher_ID1): 0.022390
#sjPlot::sjp.int(M44, type = "eff")
M44r<-r2glmm::r2beta(M44, method = "nsj")
M44r
##                               Effect   Rsq upper.CL lower.CL
## 1                              Model 0.216    0.239    0.196
## 3                         interest_c 0.163    0.184    0.143
## 2  scale(interesfun1, scale = FALSE) 0.021    0.031    0.013
## 11                          minority 0.006    0.011    0.002
## 8                           ch_other 0.001    0.004    0.000
## 4                             ch_who 0.000    0.002    0.000
## 5                           ch_howdo 0.000    0.002    0.000
## 6                             ch_mat 0.000    0.002    0.000
## 7                            ch_time 0.000    0.002    0.000
## 10                            female 0.000    0.002    0.000
## 9                         ch_framing 0.000    0.001    0.000
MuMIn::r.squaredGLMM(M44)
##            R2m       R2c
## [1,] 0.2156913 0.3888457
#plot(M44r)

Correlation Function

#correlation table function
corstarsl <- function(x) { 
  require(Hmisc) 
  x <- as.matrix(x) 
  R <- rcorr(x)$r 
  p <- rcorr(x)$P 
  
  ## define notions for significance levels; spacing is important.
  mystars <- ifelse(p < .001, "***", ifelse(p < .01, "** ", ifelse(p < .05, "*  ", "   ")))
  
  ## trunctuate the matrix that holds the correlations to two decimal
  R <- format(round(cbind(rep(-1.11, ncol(x)), R), 2))[,-1] 
  
  ## build a new matrix that includes the correlations with their apropriate stars 
  Rnew <- matrix(paste(R, mystars, sep=""), ncol=ncol(x)) 
  diag(Rnew) <- paste(diag(R), " ", sep="") 
  rownames(Rnew) <- colnames(x) 
  colnames(Rnew) <- paste(colnames(x), "", sep="") 
  
  ## remove upper triangle
  Rnew <- as.matrix(Rnew)
  Rnew[upper.tri(Rnew, diag = TRUE)] <- ""
  Rnew <- as.data.frame(Rnew) 
  
  ## remove last column and return the matrix (which is now a data frame)
  Rnew <- cbind(Rnew[1:length(Rnew)-1])
  return(Rnew) 
}

Correlations

Scimo_All_Corr <- select(SciMo_All, engagement_three, learning, posaffect, negaffect, interesfun1, interest, anychoice, ch_framing, ch_mat, ch_time, ch_who, ch_howdo, ch_other)
corstarsl(Scimo_All_Corr)
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following object is masked from 'package:sjstats':
## 
##     deff
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following objects are masked from 'package:base':
## 
##     format.pval, units
##                  engagement_three learning posaffect negaffect interesfun1
## engagement_three                                                          
## learning                  0.64***                                         
## posaffect                 0.44***  0.34***                                
## negaffect                -0.13*** -0.12***  -0.07***                      
## interesfun1               0.28***  0.23***   0.20***  -0.11***            
## interest                  0.59***  0.49***   0.39***  -0.12***     0.25***
## anychoice                 0.09***  0.05**    0.08***  -0.02        0.10***
## ch_framing                0.07***  0.02      0.03      0.00        0.09***
## ch_mat                    0.10***  0.04**    0.05**    0.00        0.10***
## ch_time                   0.08***  0.01     -0.01      0.03        0.09***
## ch_who                    0.02    -0.03      0.05**    0.01        0.05** 
## ch_howdo                  0.08***  0.04**    0.04*     0.02        0.06***
## ch_other                  0.01     0.03      0.09***  -0.01        0.03   
##                  interest anychoice ch_framing   ch_mat  ch_time   ch_who
## engagement_three                                                         
## learning                                                                 
## posaffect                                                                
## negaffect                                                                
## interesfun1                                                              
## interest                                                                 
## anychoice         0.09***                                                
## ch_framing        0.07***   0.43***                                      
## ch_mat            0.11***   0.37***    0.22***                           
## ch_time           0.04*     0.38***    0.16***  0.23***                  
## ch_who            0.02      0.33***    0.15***  0.26***  0.27***         
## ch_howdo          0.07***   0.46***    0.23***  0.38***  0.32***  0.27***
## ch_other          0.05**    0.40***   -0.05**  -0.04**  -0.04**  -0.03   
##                  ch_howdo
## engagement_three         
## learning                 
## posaffect                
## negaffect                
## interesfun1              
## interest                 
## anychoice                
## ch_framing               
## ch_mat                   
## ch_time                  
## ch_who                   
## ch_howdo                 
## ch_other         -0.06***
interest_corr <- select(SciMo_student_survey, interesfun1, notinterest1r)
corstarsl(interest_corr)
##               interesfun1
## interesfun1              
## notinterest1r     0.48***

reliability for interest

library(psy)
## 
## Attaching package: 'psy'
## The following object is masked from 'package:sjstats':
## 
##     icc
interest_reliability <- select(SciMo_student_survey, interesfun1, notinterest1r)
cronbach(interest_reliability)
## $sample.size
## [1] 231
## 
## $number.of.items
## [1] 2
## 
## $alpha
## [1] 0.635647

Descriptives

psych::describe(SciMo_esm$engagement_three)
##    vars    n mean  sd median trimmed  mad min max range  skew kurtosis
## X1    1 4105 1.64 0.8   1.67    1.67 0.99   0   3     3 -0.24    -0.58
##      se
## X1 0.01
psych::describe(SciMo_esm$posaffect)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 4086 1.06 0.86      1    0.98 0.99   0   3     3 0.62    -0.58
##      se
## X1 0.01
psych::describe(SciMo_esm$negaffect)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 4080 0.57 0.76   0.33    0.42 0.49   0   3     3 1.44     1.35
##      se
## X1 0.01
psych::describe(SciMo_esm$learning)
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis
## X1    1 4085 1.69 0.98      2    1.74 1.48   0   3     3 -0.27    -0.93
##      se
## X1 0.02
psych::describe(SciMo_esm$interest)
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 3985 1.23 0.97      1    1.16 1.48   0   3     3 0.27    -0.95
##      se
## X1 0.02
psych::describe(SciMo_esm$anychoice)
##    vars    n mean  sd median trimmed mad min max range  skew kurtosis   se
## X1    1 4135 0.55 0.5      1    0.56   0   0   1     1 -0.19    -1.96 0.01
psych::describe(SciMo_esm$ch_framing)
##    vars    n mean   sd median trimmed mad min max range skew kurtosis   se
## X1    1 4135 0.18 0.39      0    0.11   0   0   1     1 1.62     0.64 0.01
psych::describe(SciMo_esm$ch_mat)
##    vars    n mean   sd median trimmed mad min max range skew kurtosis   se
## X1    1 4135 0.14 0.35      0    0.05   0   0   1     1 2.07     2.29 0.01
psych::describe(SciMo_esm$ch_time)
##    vars    n mean   sd median trimmed mad min max range skew kurtosis   se
## X1    1 4135 0.15 0.36      0    0.06   0   0   1     1 1.96     1.83 0.01
psych::describe(SciMo_esm$ch_who)
##    vars    n mean   sd median trimmed mad min max range skew kurtosis se
## X1    1 4135 0.11 0.32      0    0.02   0   0   1     1 2.42     3.87  0
psych::describe(SciMo_esm$ch_howdo)
##    vars    n mean  sd median trimmed mad min max range skew kurtosis   se
## X1    1 4135  0.2 0.4      0    0.13   0   0   1     1 1.48      0.2 0.01
psych::describe(SciMo_esm$ch_other)
##    vars    n mean   sd median trimmed mad min max range skew kurtosis   se
## X1    1 4135 0.17 0.37      0    0.08   0   0   1     1  1.8     1.24 0.01
psych::describe(SciMo_student_survey$interesfun1)
##    vars   n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 232 2.67 0.81      3     2.7   0   1   4     3 -0.37    -0.29 0.05
psych::describe(scale(SciMo_student_survey$interesfun1, center=TRUE, scale=FALSE))
##    vars   n mean   sd median trimmed mad   min  max range  skew kurtosis
## X1    1 232    0 0.81   0.33    0.03   0 -1.67 1.33     3 -0.37    -0.29
##      se
## X1 0.05
table(SciMo_esm$ch_who)
## 
##    0    1 
## 3662  473
table(SciMo_esm$ch_mat)
## 
##    0    1 
## 3555  580
table(SciMo_esm$ch_time)
## 
##    0    1 
## 3514  621
table(SciMo_esm$ch_howdo)
## 
##    0    1 
## 3300  835
table(SciMo_esm$ch_other)
## 
##    0    1 
## 3451  684
table(SciMo_esm$ch_framing)
## 
##    0    1 
## 3371  764
table(SciMo_esm$ch_doing)
## 
##    0    1 
## 3778  357
table(SciMo_esm$ch_defin)
## 
##    0    1 
## 3773  362
table(SciMo_esm$ch_topic)
## 
##    0    1 
## 3902  233
table(SciMo_esm$ch_none)
## 
##    0    1 
## 2267 1868
table(SciMo_esm$anychoice)
## 
##    0    1 
## 1868 2267