Objectives

The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the “Problem Set 2” assignmenet on Moodle.

Questions

  1. Anscombes quartet is a set of 4 \(x,y\) data sets that were published by Francis Anscombe in a 1973 paper Graphs in statistical analysis. For this first question load the anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.
library(datasets)
data <- anscombe
  1. Summarise the data by calculating the mean, variance, for each column and the correlation between each pair (eg. x1 and y1, x2 and y2, etc) (Hint: use the fBasics() package!)
library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
sapply(X=data, FUN=mean)
##       x1       x2       x3       x4       y1       y2       y3       y4 
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
sapply(X=data, FUN=var)
##        x1        x2        x3        x4        y1        y2        y3 
## 11.000000 11.000000 11.000000 11.000000  4.127269  4.127629  4.122620 
##        y4 
##  4.123249
correlationTest(data$x1, data$y1)
## 
## Title:
##  Pearson's Correlation Test
## 
## Test Results:
##   PARAMETER:
##     Degrees of Freedom: 9
##   SAMPLE ESTIMATES:
##     Correlation: 0.8164
##   STATISTIC:
##     t: 4.2415
##   P VALUE:
##     Alternative Two-Sided: 0.00217 
##     Alternative      Less: 0.9989 
##     Alternative   Greater: 0.001085 
##   CONFIDENCE INTERVAL:
##     Two-Sided: 0.4244, 0.9507
##          Less: -1, 0.9388
##       Greater: 0.5113, 1
## 
## Description:
##  Sun Sep 23 11:07:30 2018
correlationTest(data$x2, data$y2)
## 
## Title:
##  Pearson's Correlation Test
## 
## Test Results:
##   PARAMETER:
##     Degrees of Freedom: 9
##   SAMPLE ESTIMATES:
##     Correlation: 0.8162
##   STATISTIC:
##     t: 4.2386
##   P VALUE:
##     Alternative Two-Sided: 0.002179 
##     Alternative      Less: 0.9989 
##     Alternative   Greater: 0.001089 
##   CONFIDENCE INTERVAL:
##     Two-Sided: 0.4239, 0.9506
##          Less: -1, 0.9387
##       Greater: 0.5109, 1
## 
## Description:
##  Sun Sep 23 11:07:30 2018
correlationTest(data$x3, data$y3)
## 
## Title:
##  Pearson's Correlation Test
## 
## Test Results:
##   PARAMETER:
##     Degrees of Freedom: 9
##   SAMPLE ESTIMATES:
##     Correlation: 0.8163
##   STATISTIC:
##     t: 4.2394
##   P VALUE:
##     Alternative Two-Sided: 0.002176 
##     Alternative      Less: 0.9989 
##     Alternative   Greater: 0.001088 
##   CONFIDENCE INTERVAL:
##     Two-Sided: 0.4241, 0.9507
##          Less: -1, 0.9387
##       Greater: 0.511, 1
## 
## Description:
##  Sun Sep 23 11:07:30 2018
correlationTest(data$x4, data$y4)
## 
## Title:
##  Pearson's Correlation Test
## 
## Test Results:
##   PARAMETER:
##     Degrees of Freedom: 9
##   SAMPLE ESTIMATES:
##     Correlation: 0.8165
##   STATISTIC:
##     t: 4.243
##   P VALUE:
##     Alternative Two-Sided: 0.002165 
##     Alternative      Less: 0.9989 
##     Alternative   Greater: 0.001082 
##   CONFIDENCE INTERVAL:
##     Two-Sided: 0.4246, 0.9507
##          Less: -1, 0.9388
##       Greater: 0.5115, 1
## 
## Description:
##  Sun Sep 23 11:07:30 2018
  1. Create scatter plots for each \(x, y\) pair of data.
library(ggplot2)
scatter1 <- ggplot(data, aes(x1, y1)) + geom_point() + labs(title = "x1 vs y1 Scatter Plot") 
scatter1

scatter2 <- ggplot(data, aes(x2, y2)) + geom_point() + labs(title = "x2 vs y2 Scatter Plot") 
scatter2

scatter3 <- ggplot(data, aes(x3, y3)) + geom_point() + labs(title = "x3 vs y3 Scatter Plot") 
scatter3

scatter4 <- ggplot(data, aes(x4, y4)) + geom_point() + labs(title = "x4 vs y4 Scatter Plot") 
scatter4

  1. Now change the symbols on the scatter plots to solid circles and plot them together as a 4 panel graphic
library(gridExtra)
grid.arrange(scatter1, scatter2, scatter3, scatter4, 
             ncol = 2, top = "Anscombe's Quartet")

  1. Now fit a linear model to each data set using the lm() function.
mod1 <- lm(y1 ~ x1, data = data)
summary(mod1)
## 
## Call:
## lm(formula = y1 ~ x1, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.92127 -0.45577 -0.04136  0.70941  1.83882 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   3.0001     1.1247   2.667  0.02573 * 
## x1            0.5001     0.1179   4.241  0.00217 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared:  0.6665, Adjusted R-squared:  0.6295 
## F-statistic: 17.99 on 1 and 9 DF,  p-value: 0.00217
mod2 <- lm(y2 ~ x2, data = data)
summary(mod2)
## 
## Call:
## lm(formula = y2 ~ x2, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9009 -0.7609  0.1291  0.9491  1.2691 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)    3.001      1.125   2.667  0.02576 * 
## x2             0.500      0.118   4.239  0.00218 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared:  0.6662, Adjusted R-squared:  0.6292 
## F-statistic: 17.97 on 1 and 9 DF,  p-value: 0.002179
mod3 <- lm(y3 ~ x3, data = data)
summary(mod3)
## 
## Call:
## lm(formula = y3 ~ x3, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.1586 -0.6146 -0.2303  0.1540  3.2411 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   3.0025     1.1245   2.670  0.02562 * 
## x3            0.4997     0.1179   4.239  0.00218 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared:  0.6663, Adjusted R-squared:  0.6292 
## F-statistic: 17.97 on 1 and 9 DF,  p-value: 0.002176
mod4 <- lm(y4 ~ x4, data = data)
summary(mod4)
## 
## Call:
## lm(formula = y4 ~ x4, data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.751 -0.831  0.000  0.809  1.839 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   3.0017     1.1239   2.671  0.02559 * 
## x4            0.4999     0.1178   4.243  0.00216 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared:  0.6667, Adjusted R-squared:  0.6297 
## F-statistic:    18 on 1 and 9 DF,  p-value: 0.002165
  1. Now combine the last two tasks. Create a four panel scatter plot matrix that has both the data points and the regression lines. (hint: the model objects will carry over chunks!)
scatter1_line <- scatter1 + geom_smooth(se=FALSE, method='lm')
scatter2_line <- scatter2 + geom_smooth(se=FALSE, method='lm')
scatter3_line <- scatter3 + geom_smooth(se=FALSE, method='lm')
scatter4_line <- scatter4 + geom_smooth(se=FALSE, method='lm')
grid.arrange(scatter1_line, scatter2_line, scatter3_line, scatter4_line, 
             ncol = 2, top = "Anscombe's Quartet with Regression lines")

  1. Now compare the model fits for each model object.
summary(mod1)$r.squared

[1] 0.6665425

summary(mod2)$r.squared

[1] 0.666242

summary(mod3)$r.squared

[1] 0.666324

summary(mod4)$r.squared

[1] 0.6667073

  1. In text, summarize the lesson of Anscombe’s Quartet and what it says about the value of data visualization.

These four datasets show that summary statistics may lead to wrong decisions about the data. Each x variable has the same mean. Every sets of x and y have the same correlation. Based on these summary statistics, they are the same datasets. But when looking at the scatter plots, they are totally different. x1 and y1 have a roughly positive relationship, x2 and y2 have a quadratic relationship. x3 and y3 have a strong relationship but there is an outlier. x4 doesn’t change along with y4 and there is an outlier. All of these relationships can’t be explained by the summary statistics. Therefore, data visualization provides another way of telling the story of the datasets.