AToShiDe
Pascal
22-09-2018
Another Toy Shiny Demonstration [あとしで]
Context: Coursera JHU, Developing Data Product
accuracy or kappa,classification) obtained from UCI repository,training and test,cross validation and metric,accuracy, kappa (metrics) and out-of sample error (oose) on test set,metrics, oose and user time taken to execute algorithm,C5.0 [Decision trees], SGB [Stochastic Gradent Boosting],Bagged CART [Classification and Regression Trees] and Bagged RF [Random Forest].k-fold cross validation (k=10, fixed):
cv and Repeated cv (3 k-fold)Accuracy and KappaThe tradeoffs are between fluidity/responsiveness and long computation
Example of pre-computed/cached result:
| algorithm | acc_train | kappa_train | acc_test | kappa_test | oose | utime |
|---|---|---|---|---|---|---|
| C5.0 | 0.9265884 | 0.8369122 | 0.9038462 | 0.7823357 | 0.0961538 | 2.899 |
| GBM | 0.9348367 | 0.8566328 | 0.8942308 | 0.7620632 | 0.1057692 | 1.528 |
| BCART | 0.8901735 | 0.7640245 | 0.9038462 | 0.7823357 | 0.0961538 | 1.959 |
| RF | 0.9432551 | 0.8741583 | 0.8557692 | 0.6834416 | 0.1442308 | 3.078 |