If T:C\(^2\) -> C\(^3\) satifies T(\(\left[ \begin{array}{ccc} 2\\ 3 \end{array} \right]\)) = \(\left[ \begin{array}{ccc} 2\\ 2\\ 1 \end{array} \right]\) and T(\(\left[ \begin{array}{ccc} 3\\ 4 \end{array} \right]\)) = \(\left[ \begin{array}{ccc} -1\\ 0\\ 2 \end{array} \right]\), find the matrix representation of T.
We can use -
Theorem MLTCV Matrix of a Linear Transformation, Column Vectors
Suppose that T:C\(^n\) -> C\(^m\) is a linear transformation. Then there is an
m × n matrix A such that T(x) = Ax.
Using Theorem MMIM for an idenity matirx, for I\(_n\) a linear transformation can be done such as
A\(_i\) = T(e\(_i\)), where e\(_i\) is a column of identity matrix I\(_n\).
Using the identity matrix I\(_n\), we can say that T(x) = AI\(_n\)x
= T(e\(_1\)|e\(_2\)|…|e\(_n\)|x)
= T(e\(_1\)x\(_1\)|e\(_2\)x\(_2\)|….e\(_n\)x\(_n\))
Since A\(_i\) = T(e\(_i\)), T(x) = T(A\(_1\)x\(_1\)|A\(_2\)x\(_2\)|….A\(_n\)x\(_n\))
For the exercise above,
T(e\(_1\)) = T (\(\left[ \begin{array}{ccc} 1\\ 0 \end{array} \right]\)) = T (x\(_1\) \(\left[ \begin{array}{ccc} 2\\ 3 \end{array} \right]\) + x\(_2\) \(\left[ \begin{array}{ccc} 3\\ 4 \end{array} \right]\))
A = matrix(c(2,3,3,4),nrow=2,byrow=TRUE)
B = matrix(c(1,0),nrow=2)
X = solve(A,B)
X
## [,1]
## [1,] -4
## [2,] 3
T(e\(_2\)) = T (\(\left[ \begin{array}{ccc} 0\\ 1 \end{array} \right]\)) = T (y\(_1\) \(\left[ \begin{array}{ccc} 2\\ 3 \end{array} \right]\) + y\(_2\) \(\left[ \begin{array}{ccc} 3\\ 4 \end{array} \right]\))
A = matrix(c(2,3,3,4),nrow=2,byrow=TRUE)
B = matrix(c(0,1),nrow=2)
Y = solve(A,B)
Y
## [,1]
## [1,] 3
## [2,] -2
Solving for matrix A -
A1 = matrix(c(2,2,1),nrow=3,byrow=TRUE)
A2 = matrix(c(-1,0,2),nrow=3,byrow=TRUE)
A = cbind((X[1] * A1 + X[2] * A2),(Y[1]* A1 + Y[2]*A2))
A
## [,1] [,2]
## [1,] -11 8
## [2,] -8 6
## [3,] 2 -1