#성적표
#상위 20% 커트라인
student = c('길동','유신','심청','감찬','성계')
# 길동
subject = c('kor','eng','math','sci','soc')
score = c(75,80,92,77,90)
subject_mean = c(68.4,75.1,63.5,76.2,80.3)
subject_sd = c(4.9,11.2,9.8,5.2,8.5)
# 확률면적
x <- qnorm(
(1 - 0.2), # 상위 20%지점 점수
mean = 68.4, # 구하고자 하는 과목의 평균값
sd = 4.9 # 해당과목의 표준편차
)
x # [1] 72.52394
var.score <- data.frame(
과목 = subject <- c('kor','eng','math','sci','soc'),
점수 = score <- c(75,80,92,77,90),
과목별평균 = subject_mean <- c(68.4,75.1,63.5,76.2,80.3),
표준편차 = subject_sd <- c(4.9,11.2,9.8,5.2,8.5),
stringAsFactor=F
)
View(var.score)
# 상위 20% 점수를 구해서 컬럼추가
var.score[,'상위20'] <- round(qnorm(
(1 - 0.2),
mean = var.score$과목별평균,
sd = var.score$표준편차
),2)
# 상위 20% 패스여부 판단
var.score[var.score$점수 < var.score$상위20,
'패스'] = "실패"
var.score[var.score$점수 >= var.score$상위20,
'패스']="성공"
var.score <- subset(var.score, select = -c(stringAsFactor))
View(var.score)
# 유신의 성적표
yusin.score <- data.frame(
과목 = subject <- c('kor','eng','math','sci','soc'),
점수 = score <- round(runif(5,40,100),0),
과목별평균 = subject_mean <- c(68.4,75.1,63.5,76.2,80.3),
표준편차 = subject_sd <- c(4.9,11.2,9.8,5.2,8.5),
stringAsFactor=F
)
# 상위 20% 점수를 구해서 컬럼추가
yusin.score[,'상위20'] <- round(qnorm(
(1 - 0.2),
mean = yusin.score$과목별평균,
sd = yusin.score$표준편차
),2)
# 상위 20% 패스여부 판단
yusin.score[yusin.score$점수 < yusin.score$상위20,
'패스'] = "실패"
yusin.score[yusin.score$점수 >= yusin.score$상위20,
'패스']="성공"
yusin.score <- subset(yusin.score, select = -c(stringAsFactor))
View(yusin.score)
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCmBgYHtyfQ0KDQogICO8usD7x6UNCiAgI7vzwKcgMjAlIMS/xq6288DODQogIHN0dWRlbnQgPSBjKCex5rW/JywnwK+9xScsJ73Jw7snLCewqML5JywnvLqw6CcpDQogICMgsea1vw0KICBzdWJqZWN0ID0gYygna29yJywnZW5nJywnbWF0aCcsJ3NjaScsJ3NvYycpDQogIHNjb3JlID0gYyg3NSw4MCw5Miw3Nyw5MCkNCiAgc3ViamVjdF9tZWFuID0gYyg2OC40LDc1LjEsNjMuNSw3Ni4yLDgwLjMpDQogIHN1YmplY3Rfc2QgPSBjKDQuOSwxMS4yLDkuOCw1LjIsOC41KQ0KICAjIMiut/y46cD7IA0KICB4IDwtICBxbm9ybSgNCiAgICAoMSAtIDAuMiksICMgu/PApyAyMCXB9sGhIMGhvPYNCiAgICBtZWFuID0gNjguNCwgIyCxuMfPsO3A2iDHz7TCILD6uPHAxyDG8rHVsKoNCiAgICBzZCA9IDQuOSAjIMfYtOew+rjxwMcgx6XB2MbtwvcNCiAgKQ0KICB4ICMgWzFdIDcyLjUyMzk0DQogIA0KICB2YXIuc2NvcmUgPC0gZGF0YS5mcmFtZSgNCiAgICCw+rjxID0gc3ViamVjdCA8LSAgYygna29yJywnZW5nJywnbWF0aCcsJ3NjaScsJ3NvYycpLA0KICAgIMGhvPYgPSBzY29yZSA8LSAgYyg3NSw4MCw5Miw3Nyw5MCksDQogICAgsPq48bqwxvKx1SA9IHN1YmplY3RfbWVhbiA8LSAgYyg2OC40LDc1LjEsNjMuNSw3Ni4yLDgwLjMpLA0KICAgIMelwdjG7cL3ID0gc3ViamVjdF9zZCA8LSAgYyg0LjksMTEuMiw5LjgsNS4yLDguNSksDQogICAgc3RyaW5nQXNGYWN0b3I9RiANCiAgKQ0KICBWaWV3KHZhci5zY29yZSkNCiAgDQogIA0KICAjILvzwKcgMjAlIMGhvPa4piCxuMfYvK0gxMO3s8PfsKEgDQogIHZhci5zY29yZVssJ7vzwKcyMCddIDwtIHJvdW5kKHFub3JtKA0KICAgICgxIC0gMC4yKSwgDQogICAgbWVhbiA9IHZhci5zY29yZSSw+rjxurDG8rHVLCANCiAgICBzZCA9IHZhci5zY29yZSTHpcHYxu3C9w0KICApLDIpDQogIA0KICAjILvzwKcgMjAlIMbQvbq/qbrOIMbHtNwNCiAgdmFyLnNjb3JlW3Zhci5zY29yZSTBobz2IDwgdmFyLnNjb3JlJLvzwKcyMCwgDQogICAgICAgICAgICAnxtC9uiddID0gIr3HxtAiDQogIHZhci5zY29yZVt2YXIuc2NvcmUkwaG89iA+PSB2YXIuc2NvcmUku/PApzIwLCANCiAgICAgICAgICAgICfG0L26J109Iry6sPgiDQogIA0KICB2YXIuc2NvcmUgPC0gc3Vic2V0KHZhci5zY29yZSwgc2VsZWN0ID0gLWMoc3RyaW5nQXNGYWN0b3IpKQ0KICBWaWV3KHZhci5zY29yZSkNCiAgIyDAr73FwMcgvLrA+8elDQoNCiAgeXVzaW4uc2NvcmUgPC0gZGF0YS5mcmFtZSgNCiAgICCw+rjxID0gc3ViamVjdCA8LSAgYygna29yJywnZW5nJywnbWF0aCcsJ3NjaScsJ3NvYycpLA0KICAgIMGhvPYgPSBzY29yZSA8LSByb3VuZChydW5pZig1LDQwLDEwMCksMCksDQogICAgsPq48bqwxvKx1SA9IHN1YmplY3RfbWVhbiA8LSAgYyg2OC40LDc1LjEsNjMuNSw3Ni4yLDgwLjMpLA0KICAgIMelwdjG7cL3ID0gc3ViamVjdF9zZCA8LSAgYyg0LjksMTEuMiw5LjgsNS4yLDguNSksDQogICAgc3RyaW5nQXNGYWN0b3I9RiANCiAgKQ0KIA0KICAjILvzwKcgMjAlIMGhvPa4piCxuMfYvK0gxMO3s8PfsKEgDQogIHl1c2luLnNjb3JlWywnu/PApzIwJ10gPC0gcm91bmQocW5vcm0oDQogICAgKDEgLSAwLjIpLCANCiAgICBtZWFuID0geXVzaW4uc2NvcmUksPq48bqwxvKx1SwgDQogICAgc2QgPSB5dXNpbi5zY29yZSTHpcHYxu3C9w0KICApLDIpDQogIA0KICAjILvzwKcgMjAlIMbQvbq/qbrOIMbHtNwNCiAgeXVzaW4uc2NvcmVbeXVzaW4uc2NvcmUkwaG89iA8IHl1c2luLnNjb3JlJLvzwKcyMCwgDQogICAgICAgICAgICAnxtC9uiddID0gIr3HxtAiDQogIHl1c2luLnNjb3JlW3l1c2luLnNjb3JlJMGhvPYgPj0geXVzaW4uc2NvcmUku/PApzIwLCANCiAgICAgICAgICAgICfG0L26J109Iry6sPgiDQogIA0KICB5dXNpbi5zY29yZSA8LSBzdWJzZXQoeXVzaW4uc2NvcmUsIHNlbGVjdCA9IC1jKHN0cmluZ0FzRmFjdG9yKSkNClZpZXcoeXVzaW4uc2NvcmUpDQoNCmBgYA0KDQoNCg==