#forgot my code
ls()
## character(0)
ls()
## character(0)
ls()
## character(0)
a=1:10
a
##  [1]  1  2  3  4  5  6  7  8  9 10
ac="Hello World"
a
##  [1]  1  2  3  4  5  6  7  8  9 10
getwd()
## [1] "C:/Users/ajaohri/Documents/R/Tutorials"
a=1:10
b=16:25
plot(a,b)

plot(a,b,type='l')

getwd()
## [1] "C:/Users/ajaohri/Documents/R/Tutorials"
setwd("C:\\Users\\ajaohri/Desktop")

dir()
##  [1] "Ajay Ohri Sapient Resume.docx"                                   
##  [2] "all"                                                             
##  [3] "Anaconda3 (64-bit) - Shortcut.lnk"                               
##  [4] "BOOKS"                                                           
##  [5] "churn"                                                           
##  [6] "desktop.ini"                                                     
##  [7] "Docker for Windows.lnk"                                          
##  [8] "Enron"                                                           
##  [9] "FnF_01_01209_Ajay Ohri.pdf"                                      
## [10] "FnF_01_01209_Ajay Ohri.zip"                                      
## [11] "Freeware (gursoftbank) - Shortcut.lnk"                           
## [12] "HIRING PROCESS"                                                  
## [13] "mentoring"                                                       
## [14] "model engineering"                                               
## [15] "mortdefault"                                                     
## [16] "PERSONAL"                                                        
## [17] "POCs"                                                            
## [18] "Telecom Churn Using Multiple Machine Learning Models (1).html"   
## [19] "Telecom Churn Using Multiple Machine Learning Models (1).ipynb"  
## [20] "Telecom Churn Using Multiple Machine Learning Models.ipynb"      
## [21] "Telecom Churn Using Multiple Machine Learning Models.r"          
## [22] "Telecom Churn Using Multiple Machine Learning Models.slides.html"
## [23] "Tutorial_2.docx"                                                 
## [24] "TUTORIALS"
ls()
## [1] "a"  "ac" "b"
rm(b)

rm(list = ls())


library(Rcmdr)
## Loading required package: splines
## Loading required package: RcmdrMisc
## Loading required package: car
## Loading required package: carData
## Loading required package: sandwich
## Loading required package: effects
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
## The Commander GUI is launched only in interactive sessions
## 
## Attaching package: 'Rcmdr'
## The following object is masked from 'package:car':
## 
##     Confint

library("Rcmdr", lib.loc="~/R/win-library/3.5")

Dataset <- 
  read.table("C:/Users/ajaohri/Desktop/HIRING PROCESS/coding exercise/winequality-red.csv",
             header=TRUE, sep=";", na.strings="NA", dec=".", strip.white=TRUE)
names(Dataset)
##  [1] "fixed.acidity"        "volatile.acidity"     "citric.acid"         
##  [4] "residual.sugar"       "chlorides"            "free.sulfur.dioxide" 
##  [7] "total.sulfur.dioxide" "density"              "pH"                  
## [10] "sulphates"            "alcohol"              "quality"
summary(Dataset)
##  fixed.acidity   volatile.acidity  citric.acid    residual.sugar  
##  Min.   : 4.60   Min.   :0.1200   Min.   :0.000   Min.   : 0.900  
##  1st Qu.: 7.10   1st Qu.:0.3900   1st Qu.:0.090   1st Qu.: 1.900  
##  Median : 7.90   Median :0.5200   Median :0.260   Median : 2.200  
##  Mean   : 8.32   Mean   :0.5278   Mean   :0.271   Mean   : 2.539  
##  3rd Qu.: 9.20   3rd Qu.:0.6400   3rd Qu.:0.420   3rd Qu.: 2.600  
##  Max.   :15.90   Max.   :1.5800   Max.   :1.000   Max.   :15.500  
##    chlorides       free.sulfur.dioxide total.sulfur.dioxide
##  Min.   :0.01200   Min.   : 1.00       Min.   :  6.00      
##  1st Qu.:0.07000   1st Qu.: 7.00       1st Qu.: 22.00      
##  Median :0.07900   Median :14.00       Median : 38.00      
##  Mean   :0.08747   Mean   :15.87       Mean   : 46.47      
##  3rd Qu.:0.09000   3rd Qu.:21.00       3rd Qu.: 62.00      
##  Max.   :0.61100   Max.   :72.00       Max.   :289.00      
##     density             pH          sulphates         alcohol     
##  Min.   :0.9901   Min.   :2.740   Min.   :0.3300   Min.   : 8.40  
##  1st Qu.:0.9956   1st Qu.:3.210   1st Qu.:0.5500   1st Qu.: 9.50  
##  Median :0.9968   Median :3.310   Median :0.6200   Median :10.20  
##  Mean   :0.9967   Mean   :3.311   Mean   :0.6581   Mean   :10.42  
##  3rd Qu.:0.9978   3rd Qu.:3.400   3rd Qu.:0.7300   3rd Qu.:11.10  
##  Max.   :1.0037   Max.   :4.010   Max.   :2.0000   Max.   :14.90  
##     quality     
##  Min.   :3.000  
##  1st Qu.:5.000  
##  Median :6.000  
##  Mean   :5.636  
##  3rd Qu.:6.000  
##  Max.   :8.000
table(Dataset$quality)
## 
##   3   4   5   6   7   8 
##  10  53 681 638 199  18
table(Dataset[12])
## 
##   3   4   5   6   7   8 
##  10  53 681 638 199  18
table(Dataset[,12])
## 
##   3   4   5   6   7   8 
##  10  53 681 638 199  18
table(Dataset[,6])
## 
##    1    2    3    4    5  5.5    6    7    8    9   10   11   12   13   14 
##    3    1   49   41  104    1  138   71   56   62   79   59   75   57   50 
##   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29 
##   78   61   60   46   39   30   41   22   32   34   24   32   29   23   23 
##   30   31   32   33   34   35   36   37 37.5   38   39   40 40.5   41   42 
##   16   20   22   11   18   15   11    3    2    9    5    6    1    7    3 
##   43   45   46   47   48   50   51   52   53   54   55   57   66   68   72 
##    3    3    1    1    4    2    4    3    1    1    2    1    1    2    1
unique(Dataset[,6])
##  [1] 11.0 25.0 15.0 17.0 13.0  9.0 16.0 52.0 51.0 35.0  6.0 29.0 23.0 10.0
## [15] 21.0  4.0 14.0  8.0 22.0 40.0  5.0  3.0  7.0 12.0 30.0 33.0 50.0 19.0
## [29] 20.0 27.0 18.0 28.0 34.0 42.0 41.0 37.0 32.0 36.0 24.0 26.0 39.0 40.5
## [43] 68.0 31.0 38.0 43.0 47.0  1.0 54.0 46.0 45.0  2.0  5.5 53.0 37.5 57.0
## [57] 48.0 72.0 55.0 66.0
table(Dataset$free.sulfur.dioxide,Dataset$quality)
##       
##         3  4  5  6  7  8
##   1     0  0  0  3  0  0
##   2     0  0  0  1  0  0
##   3     1  3 16 17 11  1
##   4     0  5 18 11  7  0
##   5     3  5 46 36 11  3
##   5.5   0  0  0  1  0  0
##   6     2  7 35 64 26  4
##   7     0  3 30 26 11  1
##   8     0  1 23 30  1  1
##   9     0  2 30 19 11  0
##   10    1  0 39 22 17  0
##   11    0  5 20 26  8  0
##   12    0  3 37 22 12  1
##   13    0  1 20 25 11  0
##   14    0  3 16 28  3  0
##   15    0  2 37 32  5  2
##   16    1  0 29 22  9  0
##   17    0  3 21 30  5  1
##   18    0  0 18 24  4  0
##   19    0  1 15 19  3  1
##   20    1  0 16 11  2  0
##   21    0  0 23 13  5  0
##   22    0  1  7 12  2  0
##   23    0  1 15 12  4  0
##   24    0  0 13 16  5  0
##   25    0  0 14  8  2  0
##   26    0  2 11 18  1  0
##   27    0  1 15 13  0  0
##   28    0  1 14  7  0  1
##   29    0  0  9 12  2  0
##   30    0  0  9  6  1  0
##   31    0  0 10  7  3  0
##   32    0  1 12  7  2  0
##   33    0  0  5  6  0  0
##   34    1  0 11  5  0  1
##   35    0  0 10  1  4  0
##   36    0  1  6  2  2  0
##   37    0  0  2  0  1  0
##   37.5  0  0  0  0  2  0
##   38    0  0  3  4  2  0
##   39    0  0  3  2  0  0
##   40    0  0  3  3  0  0
##   40.5  0  0  0  1  0  0
##   41    0  1  1  5  0  0
##   42    0  0  1  1  0  1
##   43    0  0  2  1  0  0
##   45    0  0  1  0  2  0
##   46    0  0  1  0  0  0
##   47    0  0  1  0  0  0
##   48    0  0  3  1  0  0
##   50    0  0  1  1  0  0
##   51    0  0  3  1  0  0
##   52    0  0  2  1  0  0
##   53    0  0  0  0  1  0
##   54    0  0  0  0  1  0
##   55    0  0  0  2  0  0
##   57    0  0  1  0  0  0
##   66    0  0  1  0  0  0
##   68    0  0  2  0  0  0
##   72    0  0  0  1  0  0
summary(table(Dataset$free.sulfur.dioxide,Dataset$quality))
## Number of cases in table: 1599 
## Number of factors: 2 
## Test for independence of all factors:
##  Chisq = 311.81, df = 295, p-value = 0.2399
##  Chi-squared approximation may be incorrect
barplot(Dataset$fixed.acidity)

boxplot(Dataset$fixed.acidity)

pie(table(Dataset$quality))

hist(Dataset$quality)

hist(Dataset$fixed.acidity,main="My First Graph",col=rainbow(7))

hist(Dataset$fixed.acidity,main="My First Graph",col=rainbow(7),breaks=20)

Dataset$quality=as.factor(Dataset$quality)
str(Dataset)
## 'data.frame':    1599 obs. of  12 variables:
##  $ fixed.acidity       : num  7.4 7.8 7.8 11.2 7.4 7.4 7.9 7.3 7.8 7.5 ...
##  $ volatile.acidity    : num  0.7 0.88 0.76 0.28 0.7 0.66 0.6 0.65 0.58 0.5 ...
##  $ citric.acid         : num  0 0 0.04 0.56 0 0 0.06 0 0.02 0.36 ...
##  $ residual.sugar      : num  1.9 2.6 2.3 1.9 1.9 1.8 1.6 1.2 2 6.1 ...
##  $ chlorides           : num  0.076 0.098 0.092 0.075 0.076 0.075 0.069 0.065 0.073 0.071 ...
##  $ free.sulfur.dioxide : num  11 25 15 17 11 13 15 15 9 17 ...
##  $ total.sulfur.dioxide: num  34 67 54 60 34 40 59 21 18 102 ...
##  $ density             : num  0.998 0.997 0.997 0.998 0.998 ...
##  $ pH                  : num  3.51 3.2 3.26 3.16 3.51 3.51 3.3 3.39 3.36 3.35 ...
##  $ sulphates           : num  0.56 0.68 0.65 0.58 0.56 0.56 0.46 0.47 0.57 0.8 ...
##  $ alcohol             : num  9.4 9.8 9.8 9.8 9.4 9.4 9.4 10 9.5 10.5 ...
##  $ quality             : Factor w/ 6 levels "3","4","5","6",..: 3 3 3 4 3 3 3 5 5 3 ...
pie(table(Dataset$quality))

summary(Dataset)
##  fixed.acidity   volatile.acidity  citric.acid    residual.sugar  
##  Min.   : 4.60   Min.   :0.1200   Min.   :0.000   Min.   : 0.900  
##  1st Qu.: 7.10   1st Qu.:0.3900   1st Qu.:0.090   1st Qu.: 1.900  
##  Median : 7.90   Median :0.5200   Median :0.260   Median : 2.200  
##  Mean   : 8.32   Mean   :0.5278   Mean   :0.271   Mean   : 2.539  
##  3rd Qu.: 9.20   3rd Qu.:0.6400   3rd Qu.:0.420   3rd Qu.: 2.600  
##  Max.   :15.90   Max.   :1.5800   Max.   :1.000   Max.   :15.500  
##    chlorides       free.sulfur.dioxide total.sulfur.dioxide
##  Min.   :0.01200   Min.   : 1.00       Min.   :  6.00      
##  1st Qu.:0.07000   1st Qu.: 7.00       1st Qu.: 22.00      
##  Median :0.07900   Median :14.00       Median : 38.00      
##  Mean   :0.08747   Mean   :15.87       Mean   : 46.47      
##  3rd Qu.:0.09000   3rd Qu.:21.00       3rd Qu.: 62.00      
##  Max.   :0.61100   Max.   :72.00       Max.   :289.00      
##     density             pH          sulphates         alcohol      quality
##  Min.   :0.9901   Min.   :2.740   Min.   :0.3300   Min.   : 8.40   3: 10  
##  1st Qu.:0.9956   1st Qu.:3.210   1st Qu.:0.5500   1st Qu.: 9.50   4: 53  
##  Median :0.9968   Median :3.310   Median :0.6200   Median :10.20   5:681  
##  Mean   :0.9967   Mean   :3.311   Mean   :0.6581   Mean   :10.42   6:638  
##  3rd Qu.:0.9978   3rd Qu.:3.400   3rd Qu.:0.7300   3rd Qu.:11.10   7:199  
##  Max.   :1.0037   Max.   :4.010   Max.   :2.0000   Max.   :14.90   8: 18
#http://bit.ly/dsdata

#BigDiamonds
library(readr)

BigDiamonds <- read_csv("C:/Users/ajaohri/Desktop/HIRING PROCESS/coding exercise/BigDiamonds.csv")
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
##   X1 = col_integer(),
##   carat = col_double(),
##   cut = col_character(),
##   color = col_character(),
##   clarity = col_character(),
##   table = col_double(),
##   depth = col_double(),
##   cert = col_character(),
##   measurements = col_character(),
##   price = col_integer(),
##   x = col_double(),
##   y = col_double(),
##   z = col_double()
## )
head(BigDiamonds)
## # A tibble: 6 x 13
##      X1 carat cut   color clarity table depth cert  measurements price
##   <int> <dbl> <chr> <chr> <chr>   <dbl> <dbl> <chr> <chr>        <int>
## 1     1  0.25 V.Go~ K     I1         59  63.7 GIA   3.96 x 3.95~    NA
## 2     2  0.23 Good  G     I1         61  58.1 GIA   4.00 x 4.05~    NA
## 3     3  0.34 Good  J     I2         58  58.7 GIA   4.56 x 4.53~    NA
## 4     4  0.21 V.Go~ D     I1         60  60.6 GIA   3.80 x 3.82~    NA
## 5     5  0.31 V.Go~ K     I1         59  62.2 EGL   4.35 x 4.26~    NA
## 6     6  0.2  Good  G     SI2        60  64.4 GIA   3.74 x 3.67~    NA
## # ... with 3 more variables: x <dbl>, y <dbl>, z <dbl>
BigDiamonds=data.frame(BigDiamonds)

str(BigDiamonds)
## 'data.frame':    598024 obs. of  13 variables:
##  $ X1          : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ carat       : num  0.25 0.23 0.34 0.21 0.31 0.2 0.2 0.22 0.23 0.2 ...
##  $ cut         : chr  "V.Good" "Good" "Good" "V.Good" ...
##  $ color       : chr  "K" "G" "J" "D" ...
##  $ clarity     : chr  "I1" "I1" "I2" "I1" ...
##  $ table       : num  59 61 58 60 59 60 63 61 57.5 65 ...
##  $ depth       : num  63.7 58.1 58.7 60.6 62.2 64.4 62.6 59.2 63.6 54.9 ...
##  $ cert        : chr  "GIA" "GIA" "GIA" "GIA" ...
##  $ measurements: chr  "3.96 x 3.95 x 2.52" "4.00 x 4.05 x 2.30" "4.56 x 4.53 x 2.67" "3.80 x 3.82 x 2.31" ...
##  $ price       : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ x           : num  3.96 4 4.56 3.8 4.35 3.74 3.72 3.95 3.87 3.83 ...
##  $ y           : num  3.95 4.05 4.53 3.82 4.26 3.67 3.65 3.97 3.9 4 ...
##  $ z           : num  2.52 2.3 2.67 2.31 2.68 2.38 2.31 2.34 2.47 2.14 ...
summary(BigDiamonds)
##        X1             carat           cut               color          
##  Min.   :     1   Min.   :0.200   Length:598024      Length:598024     
##  1st Qu.:149507   1st Qu.:0.500   Class :character   Class :character  
##  Median :299013   Median :0.900   Mode  :character   Mode  :character  
##  Mean   :299013   Mean   :1.071                                        
##  3rd Qu.:448518   3rd Qu.:1.500                                        
##  Max.   :598024   Max.   :9.250                                        
##                                                                        
##    clarity              table           depth           cert          
##  Length:598024      Min.   : 0.00   Min.   : 0.00   Length:598024     
##  Class :character   1st Qu.:56.00   1st Qu.:61.00   Class :character  
##  Mode  :character   Median :58.00   Median :62.10   Mode  :character  
##                     Mean   :57.63   Mean   :61.06                     
##                     3rd Qu.:59.00   3rd Qu.:62.70                     
##                     Max.   :75.90   Max.   :81.30                     
##                                                                       
##  measurements           price             x                y         
##  Length:598024      Min.   :  300   Min.   : 0.150   Min.   : 1.000  
##  Class :character   1st Qu.: 1220   1st Qu.: 4.740   1st Qu.: 4.970  
##  Mode  :character   Median : 3503   Median : 5.780   Median : 6.050  
##                     Mean   : 8753   Mean   : 5.991   Mean   : 6.199  
##                     3rd Qu.:11174   3rd Qu.: 6.970   3rd Qu.: 7.230  
##                     Max.   :99990   Max.   :13.890   Max.   :13.890  
##                     NA's   :713     NA's   :1815     NA's   :1852    
##        z         
##  Min.   : 0.040  
##  1st Qu.: 3.120  
##  Median : 3.860  
##  Mean   : 4.033  
##  3rd Qu.: 4.610  
##  Max.   :13.180  
##  NA's   :2544
anyNA(BigDiamonds)
## [1] TRUE
BigDiamonds=na.omit(BigDiamonds)

str(BigDiamonds)
## 'data.frame':    593784 obs. of  13 variables:
##  $ X1          : int  494 495 496 497 498 499 500 501 502 503 ...
##  $ carat       : num  0.24 0.31 0.26 0.24 0.3 0.34 0.2 0.29 0.22 0.25 ...
##  $ cut         : chr  "V.Good" "V.Good" "Good" "Ideal" ...
##  $ color       : chr  "G" "K" "J" "G" ...
##  $ clarity     : chr  "SI1" "SI2" "VS2" "SI1" ...
##  $ table       : num  61 59 56.5 55 57 66 62 58 62 64 ...
##  $ depth       : num  58.9 60.2 64.1 61.3 62.2 55 59.1 61.4 59.6 60.5 ...
##  $ cert        : chr  "GIA" "GIA" "IGI" "GIA" ...
##  $ measurements: chr  "4.09 x 4.10 x 2.41" "4.40 x 4.42 x 2.65" "4.01 x 4.05 x 2.58" "4.01 x 4.03 x 2.47" ...
##  $ price       : int  300 300 300 300 300 300 301 301 301 301 ...
##  $ x           : num  4.09 4.4 4.01 4.01 4.21 4.75 3.79 4.25 3.9 4.02 ...
##  $ y           : num  4.1 4.42 4.05 4.03 4.24 4.61 3.82 4.31 3.93 4.06 ...
##  $ z           : num  2.41 2.65 2.58 2.47 2.63 2.57 2.25 2.63 2.33 2.44 ...
##  - attr(*, "na.action")= 'omit' Named int  1 2 3 4 5 6 7 8 9 10 ...
##   ..- attr(*, "names")= chr  "1" "2" "3" "4" ...
BigDiamonds2=BigDiamonds
BigDiamonds[3:5]=lapply(BigDiamonds[3:5],as.factor)

str(BigDiamonds)
## 'data.frame':    593784 obs. of  13 variables:
##  $ X1          : int  494 495 496 497 498 499 500 501 502 503 ...
##  $ carat       : num  0.24 0.31 0.26 0.24 0.3 0.34 0.2 0.29 0.22 0.25 ...
##  $ cut         : Factor w/ 3 levels "Good","Ideal",..: 3 3 1 2 1 1 3 2 2 3 ...
##  $ color       : Factor w/ 9 levels "D","E","F","G",..: 4 8 7 4 5 3 6 4 6 1 ...
##  $ clarity     : Factor w/ 9 levels "I1","I2","IF",..: 4 5 7 4 1 1 9 1 6 4 ...
##  $ table       : num  61 59 56.5 55 57 66 62 58 62 64 ...
##  $ depth       : num  58.9 60.2 64.1 61.3 62.2 55 59.1 61.4 59.6 60.5 ...
##  $ cert        : chr  "GIA" "GIA" "IGI" "GIA" ...
##  $ measurements: chr  "4.09 x 4.10 x 2.41" "4.40 x 4.42 x 2.65" "4.01 x 4.05 x 2.58" "4.01 x 4.03 x 2.47" ...
##  $ price       : int  300 300 300 300 300 300 301 301 301 301 ...
##  $ x           : num  4.09 4.4 4.01 4.01 4.21 4.75 3.79 4.25 3.9 4.02 ...
##  $ y           : num  4.1 4.42 4.05 4.03 4.24 4.61 3.82 4.31 3.93 4.06 ...
##  $ z           : num  2.41 2.65 2.58 2.47 2.63 2.57 2.25 2.63 2.33 2.44 ...
##  - attr(*, "na.action")= 'omit' Named int  1 2 3 4 5 6 7 8 9 10 ...
##   ..- attr(*, "names")= chr  "1" "2" "3" "4" ...
rm(BigDiamonds2)

unique(BigDiamonds$cert)
## [1] "GIA"        "IGI"        "EGL USA"    "EGL"        "EGL Intl." 
## [6] "AGS"        "OTHER"      "HRD"        "EGL ISRAEL"
#unique(BigDiamonds$measurements)

BigDiamonds[8]=lapply(BigDiamonds[8],as.factor)

table(BigDiamonds$color,BigDiamonds$cut)
##    
##      Good Ideal V.Good
##   D  6566 45175  21460
##   E  9623 55220  28016
##   F  9042 57703  26027
##   G  8804 61569  24990
##   H  7542 55588  22821
##   I  7339 42779  19761
##   J  5316 29322  13840
##   K  3449 14631   7580
##   L  1468  5039   3114
library(data.table)
BigDiamonds=as.data.table(BigDiamonds)
BigDiamonds[carat>4,mean(price),color]
##    color       V1
## 1:     D 54892.52
## 2:     E 55229.97
## 3:     G 58653.00
## 4:     K 55531.86
## 5:     J 60801.32
## 6:     I 65580.97
## 7:     H 62766.09
## 8:     F 60127.75
## 9:     L 49344.77
BigDiamonds[carat>4,mean(price),.(color,cut)]
##     color    cut       V1
##  1:     D   Good 41765.17
##  2:     E V.Good 48962.27
##  3:     G   Good 54954.66
##  4:     K  Ideal 56021.63
##  5:     J   Good 52148.42
##  6:     I  Ideal 67698.66
##  7:     K V.Good 54158.94
##  8:     I V.Good 63904.79
##  9:     H  Ideal 64726.88
## 10:     E   Good 38605.41
## 11:     F  Ideal 65238.88
## 12:     K   Good 58215.48
## 13:     J  Ideal 62742.25
## 14:     H V.Good 57999.82
## 15:     F V.Good 51123.08
## 16:     G V.Good 57393.23
## 17:     J V.Good 59458.64
## 18:     I   Good 55191.36
## 19:     L V.Good 48798.36
## 20:     G  Ideal 60005.04
## 21:     E  Ideal 59862.82
## 22:     L  Ideal 51010.76
## 23:     D V.Good 55993.31
## 24:     F   Good 58889.82
## 25:     D  Ideal 56046.47
## 26:     L   Good 45930.74
## 27:     H   Good 62125.52
##     color    cut       V1
BigDiamonds[carat>4,.(mean(price),.N),.(color,cut)]
##     color    cut       V1   N
##  1:     D   Good 41765.17  12
##  2:     E V.Good 48962.27  51
##  3:     G   Good 54954.66  47
##  4:     K  Ideal 56021.63 535
##  5:     J   Good 52148.42 109
##  6:     I  Ideal 67698.66 748
##  7:     K V.Good 54158.94 357
##  8:     I V.Good 63904.79 288
##  9:     H  Ideal 64726.88 798
## 10:     E   Good 38605.41  17
## 11:     F  Ideal 65238.88 242
## 12:     K   Good 58215.48  85
## 13:     J  Ideal 62742.25 800
## 14:     H V.Good 57999.82 317
## 15:     F V.Good 51123.08 132
## 16:     G V.Good 57393.23 228
## 17:     J V.Good 59458.64 454
## 18:     I   Good 55191.36 106
## 19:     L V.Good 48798.36 123
## 20:     G  Ideal 60005.04 341
## 21:     E  Ideal 59862.82 130
## 22:     L  Ideal 51010.76 151
## 23:     D V.Good 55993.31  54
## 24:     F   Good 58889.82  39
## 25:     D  Ideal 56046.47  85
## 26:     L   Good 45930.74  54
## 27:     H   Good 62125.52  84
##     color    cut       V1   N