Spark Summit from Andrej Karpathy at Tesla
The toolchain for the (software) 2.0 tack does not exist.
“Helps teams manage their machine learning lifecycle.”
R is a programming language and free software environment for statistical computing and graphics.
Interface language diagram by John Chambers - Rick Becker useR 2016.
Provides a rich package archive provided in CRAN and Bioconductor: dplyr to manipulate data, cluster to analyze clusters, ggplot2 to visualize data, etc.
Daily downloads of CRAN packages.
Language features I would highlighting:
2.1.1 Vectors
2.1.4 Expression objects
2.1.8 Promise objects
2.1.9 Dot-dot-dot
3.1.4 Operators
Select the cyl and hp columns and add 2 and 20:
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
This is how I would have written R code as a software engineer before knowing R:
# Select columns subset
data = data.frame(mtcars$cyl, mtcars$hp)
colnames(data) = c("cyl", "hp")
# Transform each row
for (idx in 1:nrow(data)) {
data$cyl[idx] = data$cyl[idx] + 2
}
# One column at a time to use the CPU cache efficiently
for (idx in 1:nrow(data)) {
data$hp[idx] = data$hp[idx] + 20
}Everything is a vector in R:
Dynamic parameters using the ... parameter:
One can lazily evaluate operations and operate over expressions:
Use <- for assignment, or the newer %>% pipe:
Install Anaconda or miniconda.
Today…
devtools::install_github("mlflow/mlflow", subdir = "R/mlflow")
mlflow::mlflow_install()
reticulate::conda_install("r-mlflow", "<local github repo>", pip = TRUE)Soon…
Implicit MLflow run:
library(mlflow)
# Log a parameter (key-value pair)
mlflow_log_param("param1", 5)
# Log a metric; metrics can be updated throughout the run
mlflow_log_metric("foo", 1)
mlflow_log_metric("foo", 2)
mlflow_log_metric("foo", 3)
# Log an artifact (output file)
writeLines("Hello world!", "output.txt")
mlflow_log_artifact("output.txt")Run terminates when the R session finishes or by running:
Useful when sourcing files.
Explicit MLflow run:
library(mlflow)
with(mlflow_start_run(), {
# Log a parameter (key-value pair)
mlflow_log_param("param1", 5)
# Log a metric; metrics can be updated throughout the run
mlflow_log_metric("foo", 1)
mlflow_log_metric("foo", 2)
mlflow_log_metric("foo", 3)
# Log an artifact (output file)
writeLines("Hello world!", "output.txt")
mlflow_log_artifact("output.txt")
})Or adding the following to tracking.R in RStudio 1.2:
Create dependencies snapshot:
Then restore snapshot:
mlflow_run(
"train.R",
"https://github.com/rstudio/mlflow-example",
param_list = list(alpha = 0.2)
)Elasticnet model (alpha=0.2, lambda=0.5):
RMSE: 0.827574750159859
MAE: 0.632070002076146
R2: 0.227227498131926
Or from bash:
Generic functions are serialized with crate:
column <- mlflow_log_param("column", 1)
model <- lm(
Sepal.Width ~ x,
data.frame(Sepal.Width = iris$Sepal.Width, x = iris[,column])
)
mlflow_save_model(
crate(~ stats::predict(model, .x), model)
)However, mlflow_save_model() can be extended by packages:
1 2
3.400381 3.406570
Or from bash,
Currently merged, various github issues pending:
github.com/mlflow/mlflow
@javierluraschi