\[\mathbf{A} = \left(\begin{array} {rrr} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{array}\right)\]
A <- matrix(c(1,2,3,2,1,2,3,2,1), 3, 3)
A
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 2 1 2
## [3,] 3 2 1
eigen(A)
## eigen() decomposition
## $values
## [1] 5.7015621 -0.7015621 -2.0000000
##
## $vectors
## [,1] [,2] [,3]
## [1,] -0.6059128 0.3645129 7.071068e-01
## [2,] -0.5154991 -0.8568901 -5.551115e-16
## [3,] -0.6059128 0.3645129 -7.071068e-01
P <- eigen(A)$vectors
D <- diag(eigen(A)$values)
P %*% D %*% solve(P)
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 2 1 2
## [3,] 3 2 1
svd(A)
## $d
## [1] 5.7015621 2.0000000 0.7015621
##
## $u
## [,1] [,2] [,3]
## [1,] -0.6059128 7.071068e-01 0.3645129
## [2,] -0.5154991 3.330669e-16 -0.8568901
## [3,] -0.6059128 -7.071068e-01 0.3645129
##
## $v
## [,1] [,2] [,3]
## [1,] -0.6059128 -7.071068e-01 -0.3645129
## [2,] -0.5154991 3.330669e-16 0.8568901
## [3,] -0.6059128 7.071068e-01 -0.3645129
\[
\left(3,\;\left(\begin{array}{cc}
1^{}/{\sqrt{2}}\\
-1^{}/{\sqrt{2}}
\end{array}\right) \right)
\;and\;
\left(5,\;\left(\begin{array}{cc}
1^{}/{\sqrt{2}}\\
1^{}/{\sqrt{2}}
\end{array}\right) \right)
\]
x = 1/sqrt(2)
P = matrix(c(x, -x, x, x), 2, 2)
D = diag(c(3,5))
A = P %*% D %*% solve(P)
A
## [,1] [,2]
## [1,] 4 1
## [2,] 1 4
det(A)
## [1] 15
sum(diag(A))
## [1] 8
crime <- readxl::read_excel("uscrime.xlsx", sheet = 1, skip = 1)
sapply(crime[, 3:9], mean)
## Murder Rape Robbery Assault Burglary Larcery Autothieft
## 6.858 15.616 101.510 135.420 930.800 1943.640 367.860
cov(crime[, 3:9]) %>% round(., 2)
## Murder Rape Robbery Assault Burglary Larcery Autothieft
## Murder 14.81 14.70 119.68 213.15 384.46 176.95 84.36
## Rape 14.70 54.00 369.52 348.61 1804.50 3132.74 646.41
## Robbery 119.68 369.52 8316.23 3501.22 20485.88 28234.76 11232.25
## Assault 213.15 348.61 3501.22 4647.11 12816.31 15324.75 4495.59
## Burglary 384.46 1804.50 20485.88 12816.31 130356.94 205309.15 50455.50
## Larcery 176.95 3132.74 28234.76 15324.75 205309.15 503857.62 78605.91
## Autothieft 84.36 646.41 11232.25 4495.59 50455.50 78605.91 39843.96
cor(crime[, 3:9]) %>% round(., 2)
## Murder Rape Robbery Assault Burglary Larcery Autothieft
## Murder 1.00 0.52 0.34 0.81 0.28 0.06 0.11
## Rape 0.52 1.00 0.55 0.70 0.68 0.60 0.44
## Robbery 0.34 0.55 1.00 0.56 0.62 0.44 0.62
## Assault 0.81 0.70 0.56 1.00 0.52 0.32 0.33
## Burglary 0.28 0.68 0.62 0.52 1.00 0.80 0.70
## Larcery 0.06 0.60 0.44 0.32 0.80 1.00 0.55
## Autothieft 0.11 0.44 0.62 0.33 0.70 0.55 1.00