If T : \(C^4 → C^3\) is a linear transformation and not injective, then:
Let \(n ∈ C^4\) \[ T\left(\begin{array}{cc} n \end{array}\right) = 0 = \left(\begin{array}{cc} 0\\ 0\\ 0 \end{array}\right) = \left(\begin{array}{cc} 2n_{1}+n_{2}+n_{3} & | & 0\\ -n_{1}+3n_{2}+n_{3}-n_{4} & | & 0\\ 3n_{1}+n_{2}+2n_{3}-2n_{4} & | & 0 \end{array}\right) \]
=> \(\begin{cases} 2n_{1}+n_{2}+n_{3}=0 \\ -n_{1}+3n_{2}+n_{3}-n_{4}=0 \\ 3n_{1}+n_{2}+2n_{3}-2n_{4}=0 \end{cases}\)
\[ \left(\begin{array}{cc} 2 & 1 & 1 & 0\\ -1 & 3 & 1 & -1\\ 3 & 1 & 2 & -2 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 & 0 & 1\\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & -3 \end{array}\right) = \left(\begin{array}{cc} n_{1} & 0 & 0 & n_{4} & | & 0\\ 0 & n_{2} & 0 & n_{4} & | & 0\\ 0 & 0 & n_{3} & -3n_{4} & | & 0 \end{array}\right) = \left(\begin{array}{cc} n_{1} = -n_{4}\\ n_{2} = -n_{4}\\ n_{3} = 3n_{4} \end{array}\right) = n_{4}\left(\begin{array}{cc} -1\\ -1\\ 3\\ 1 \end{array}\right) \]
At random \(x=\left(\begin{array}{cc}1\\1\\1\\1\end{array}\right)\), \(y = x + n = \left(\begin{array}{cc}1\\1\\1\\1\end{array}\right)+\left(\begin{array}{cc}-1\\-1\\3\\1\end{array}\right)=\left(\begin{array}{cc}0\\0\\4\\2\end{array}\right)\)
=> \(T(y) = \left(\begin{array}{cc}4\\2\\4\end{array}\right) = T(x)\)