```
The closing price of the stock was .892857
# Load csv file
Data.NFLX <- read.csv("/resources/rstudio/FinModeling/Data/NFLX.csv", header = TRUE)
head(Data.NFLX)
## Date Open High Low Close Adj.Close Volume
## 1 2002-12-13 0.900000 0.914286 0.860714 0.892857 0.892857 1395800
## 2 2002-12-16 0.898571 0.927857 0.867857 0.913571 0.913571 2098600
## 3 2002-12-17 0.914286 0.927143 0.892857 0.906429 0.906429 1680000
## 4 2002-12-18 0.896429 0.898571 0.763571 0.785000 0.785000 13378400
## 5 2002-12-19 0.770714 0.799286 0.758571 0.771429 0.771429 3781400
## 6 2002-12-20 0.764286 0.771429 0.728571 0.764286 0.764286 4384800
tail(Data.NFLX)
## Date Open High Low Close Adj.Close Volume
## 3929 2018-07-24 366.94 367.40 354.56 357.32 357.32 12851500
## 3930 2018-07-25 357.57 363.28 355.65 362.87 362.87 8467800
## 3931 2018-07-26 358.19 365.54 356.63 363.09 363.09 6993700
## 3932 2018-07-27 366.85 367.00 351.65 355.21 355.21 8949500
## 3933 2018-07-30 351.93 352.03 334.02 334.96 334.96 18260700
## 3934 2018-07-31 331.51 342.50 328.00 337.45 337.45 14085400
Convert the date variable from a Factor to a Date.
class(Data.NFLX$Date)
## [1] "factor"
date <- as.Date(Data.NFLX$Date, format = "%Y-%m-%d")
class(date)
## [1] "Date"
Combine date and data.NFLX.
Data.NFLX <- cbind(date, Data.NFLX[, -1])
head(Data.NFLX)
## date Open High Low Close Adj.Close Volume
## 1 2002-12-13 0.900000 0.914286 0.860714 0.892857 0.892857 1395800
## 2 2002-12-16 0.898571 0.927857 0.867857 0.913571 0.913571 2098600
## 3 2002-12-17 0.914286 0.927143 0.892857 0.906429 0.906429 1680000
## 4 2002-12-18 0.896429 0.898571 0.763571 0.785000 0.785000 13378400
## 5 2002-12-19 0.770714 0.799286 0.758571 0.771429 0.771429 3781400
## 6 2002-12-20 0.764286 0.771429 0.728571 0.764286 0.764286 4384800
tail(Data.NFLX)
## date Open High Low Close Adj.Close Volume
## 3929 2018-07-24 366.94 367.40 354.56 357.32 357.32 12851500
## 3930 2018-07-25 357.57 363.28 355.65 362.87 362.87 8467800
## 3931 2018-07-26 358.19 365.54 356.63 363.09 363.09 6993700
## 3932 2018-07-27 366.85 367.00 351.65 355.21 355.21 8949500
## 3933 2018-07-30 351.93 352.03 334.02 334.96 334.96 18260700
## 3934 2018-07-31 331.51 342.50 328.00 337.45 337.45 14085400
Convert data.frame object to xts object.
After the conversion, the data now has 6 variables (columns).
class(Data.NFLX)
## [1] "data.frame"
library(xts)
Data.NFLX <- xts(Data.NFLX[, 2:7], order.by = Data.NFLX[, 1])
class(Data.NFLX)
## [1] "xts" "zoo"
Rename variables
names(Data.NFLX)
## [1] "Open" "High" "Low" "Close" "Adj.Close" "Volume"
names(Data.NFLX) <- paste(c("NFLX.Open", "NFLX.High", "NFLX.Low",
"NFLX.Close", "NFLX.Adjusted", "NFLX.Volume"))
head(Data.NFLX)
## NFLX.Open NFLX.High NFLX.Low NFLX.Close NFLX.Adjusted
## 2002-12-13 0.900000 0.914286 0.860714 0.892857 0.892857
## 2002-12-16 0.898571 0.927857 0.867857 0.913571 0.913571
## 2002-12-17 0.914286 0.927143 0.892857 0.906429 0.906429
## 2002-12-18 0.896429 0.898571 0.763571 0.785000 0.785000
## 2002-12-19 0.770714 0.799286 0.758571 0.771429 0.771429
## 2002-12-20 0.764286 0.771429 0.728571 0.764286 0.764286
## NFLX.Volume
## 2002-12-13 1395800
## 2002-12-16 2098600
## 2002-12-17 1680000
## 2002-12-18 13378400
## 2002-12-19 3781400
## 2002-12-20 4384800
tail(Data.NFLX)
## NFLX.Open NFLX.High NFLX.Low NFLX.Close NFLX.Adjusted
## 2018-07-24 366.94 367.40 354.56 357.32 357.32
## 2018-07-25 357.57 363.28 355.65 362.87 362.87
## 2018-07-26 358.19 365.54 356.63 363.09 363.09
## 2018-07-27 366.85 367.00 351.65 355.21 355.21
## 2018-07-30 351.93 352.03 334.02 334.96 334.96
## 2018-07-31 331.51 342.50 328.00 337.45 337.45
## NFLX.Volume
## 2018-07-24 12851500
## 2018-07-25 8467800
## 2018-07-26 6993700
## 2018-07-27 8949500
## 2018-07-30 18260700
## 2018-07-31 14085400
Plot the data
The stock reached its highest price in July of 2018.
plot(Data.NFLX$NFLX.Close)
The highest price that the stock has ever reached is 423.21. However, the highest clsoing price of the stock is 418.97.
summary(Data.NFLX)
## Index NFLX.Open NFLX.High
## Min. :2002-12-13 Min. : 0.6929 Min. : 0.7086
## 1st Qu.:2006-11-08 1st Qu.: 3.7343 1st Qu.: 3.8243
## Median :2010-10-06 Median : 10.6107 Median : 10.8643
## Mean :2010-10-07 Mean : 45.9126 Mean : 46.6075
## 3rd Qu.:2014-09-03 3rd Qu.: 60.8068 3rd Qu.: 61.5161
## Max. :2018-07-31 Max. :421.3800 Max. :423.2100
## NFLX.Low NFLX.Close NFLX.Adjusted
## Min. : 0.6843 Min. : 0.6907 Min. : 0.6907
## 1st Qu.: 3.6429 1st Qu.: 3.7286 1st Qu.: 3.7286
## Median : 10.3607 Median : 10.6179 Median : 10.6179
## Mean : 45.1841 Mean : 45.9355 Mean : 45.9355
## 3rd Qu.: 60.1032 3rd Qu.: 60.7368 3rd Qu.: 60.7368
## Max. :413.0800 Max. :418.9700 Max. :418.9700
## NFLX.Volume
## Min. : 866300
## 1st Qu.: 7126450
## Median : 12444600
## Mean : 18683695
## 3rd Qu.: 22590575
## Max. :323414000
```