```

Q1 What is the closing price of the stock on December 13, 2002?

The closing price of the stock was .892857

# Load csv file
Data.NFLX <- read.csv("/resources/rstudio/FinModeling/Data/NFLX.csv", header = TRUE)
head(Data.NFLX)
##         Date     Open     High      Low    Close Adj.Close   Volume
## 1 2002-12-13 0.900000 0.914286 0.860714 0.892857  0.892857  1395800
## 2 2002-12-16 0.898571 0.927857 0.867857 0.913571  0.913571  2098600
## 3 2002-12-17 0.914286 0.927143 0.892857 0.906429  0.906429  1680000
## 4 2002-12-18 0.896429 0.898571 0.763571 0.785000  0.785000 13378400
## 5 2002-12-19 0.770714 0.799286 0.758571 0.771429  0.771429  3781400
## 6 2002-12-20 0.764286 0.771429 0.728571 0.764286  0.764286  4384800
tail(Data.NFLX)
##            Date   Open   High    Low  Close Adj.Close   Volume
## 3929 2018-07-24 366.94 367.40 354.56 357.32    357.32 12851500
## 3930 2018-07-25 357.57 363.28 355.65 362.87    362.87  8467800
## 3931 2018-07-26 358.19 365.54 356.63 363.09    363.09  6993700
## 3932 2018-07-27 366.85 367.00 351.65 355.21    355.21  8949500
## 3933 2018-07-30 351.93 352.03 334.02 334.96    334.96 18260700
## 3934 2018-07-31 331.51 342.50 328.00 337.45    337.45 14085400

Convert the date variable from a Factor to a Date.

class(Data.NFLX$Date)
## [1] "factor"
date <- as.Date(Data.NFLX$Date, format = "%Y-%m-%d")
class(date)
## [1] "Date"

Combine date and data.NFLX.

Data.NFLX <- cbind(date, Data.NFLX[, -1])
head(Data.NFLX)
##         date     Open     High      Low    Close Adj.Close   Volume
## 1 2002-12-13 0.900000 0.914286 0.860714 0.892857  0.892857  1395800
## 2 2002-12-16 0.898571 0.927857 0.867857 0.913571  0.913571  2098600
## 3 2002-12-17 0.914286 0.927143 0.892857 0.906429  0.906429  1680000
## 4 2002-12-18 0.896429 0.898571 0.763571 0.785000  0.785000 13378400
## 5 2002-12-19 0.770714 0.799286 0.758571 0.771429  0.771429  3781400
## 6 2002-12-20 0.764286 0.771429 0.728571 0.764286  0.764286  4384800
tail(Data.NFLX)
##            date   Open   High    Low  Close Adj.Close   Volume
## 3929 2018-07-24 366.94 367.40 354.56 357.32    357.32 12851500
## 3930 2018-07-25 357.57 363.28 355.65 362.87    362.87  8467800
## 3931 2018-07-26 358.19 365.54 356.63 363.09    363.09  6993700
## 3932 2018-07-27 366.85 367.00 351.65 355.21    355.21  8949500
## 3933 2018-07-30 351.93 352.03 334.02 334.96    334.96 18260700
## 3934 2018-07-31 331.51 342.50 328.00 337.45    337.45 14085400

Convert data.frame object to xts object.

Q2 How many variables (columns) does your data have after conversion?

After the conversion, the data now has 6 variables (columns).

class(Data.NFLX)
## [1] "data.frame"
library(xts)
Data.NFLX <- xts(Data.NFLX[, 2:7], order.by = Data.NFLX[, 1])
class(Data.NFLX)
## [1] "xts" "zoo"

Rename variables

names(Data.NFLX)
## [1] "Open"      "High"      "Low"       "Close"     "Adj.Close" "Volume"
names(Data.NFLX) <- paste(c("NFLX.Open", "NFLX.High", "NFLX.Low", 
                            "NFLX.Close", "NFLX.Adjusted", "NFLX.Volume"))
head(Data.NFLX)
##            NFLX.Open NFLX.High NFLX.Low NFLX.Close NFLX.Adjusted
## 2002-12-13  0.900000  0.914286 0.860714   0.892857      0.892857
## 2002-12-16  0.898571  0.927857 0.867857   0.913571      0.913571
## 2002-12-17  0.914286  0.927143 0.892857   0.906429      0.906429
## 2002-12-18  0.896429  0.898571 0.763571   0.785000      0.785000
## 2002-12-19  0.770714  0.799286 0.758571   0.771429      0.771429
## 2002-12-20  0.764286  0.771429 0.728571   0.764286      0.764286
##            NFLX.Volume
## 2002-12-13     1395800
## 2002-12-16     2098600
## 2002-12-17     1680000
## 2002-12-18    13378400
## 2002-12-19     3781400
## 2002-12-20     4384800
tail(Data.NFLX)
##            NFLX.Open NFLX.High NFLX.Low NFLX.Close NFLX.Adjusted
## 2018-07-24    366.94    367.40   354.56     357.32        357.32
## 2018-07-25    357.57    363.28   355.65     362.87        362.87
## 2018-07-26    358.19    365.54   356.63     363.09        363.09
## 2018-07-27    366.85    367.00   351.65     355.21        355.21
## 2018-07-30    351.93    352.03   334.02     334.96        334.96
## 2018-07-31    331.51    342.50   328.00     337.45        337.45
##            NFLX.Volume
## 2018-07-24    12851500
## 2018-07-25     8467800
## 2018-07-26     6993700
## 2018-07-27     8949500
## 2018-07-30    18260700
## 2018-07-31    14085400

Plot the data

Q3 During what year (of the study period) did the stock reach the highest price?

The stock reached its highest price in July of 2018.

plot(Data.NFLX$NFLX.Close)

Q4 What is the highest price the stock ever reached? Consider only the study period.

Hint: Use the closing price in the summary statistics below.

The highest price that the stock has ever reached is 423.21. However, the highest clsoing price of the stock is 418.97.

summary(Data.NFLX)
##      Index              NFLX.Open          NFLX.High       
##  Min.   :2002-12-13   Min.   :  0.6929   Min.   :  0.7086  
##  1st Qu.:2006-11-08   1st Qu.:  3.7343   1st Qu.:  3.8243  
##  Median :2010-10-06   Median : 10.6107   Median : 10.8643  
##  Mean   :2010-10-07   Mean   : 45.9126   Mean   : 46.6075  
##  3rd Qu.:2014-09-03   3rd Qu.: 60.8068   3rd Qu.: 61.5161  
##  Max.   :2018-07-31   Max.   :421.3800   Max.   :423.2100  
##     NFLX.Low          NFLX.Close       NFLX.Adjusted     
##  Min.   :  0.6843   Min.   :  0.6907   Min.   :  0.6907  
##  1st Qu.:  3.6429   1st Qu.:  3.7286   1st Qu.:  3.7286  
##  Median : 10.3607   Median : 10.6179   Median : 10.6179  
##  Mean   : 45.1841   Mean   : 45.9355   Mean   : 45.9355  
##  3rd Qu.: 60.1032   3rd Qu.: 60.7368   3rd Qu.: 60.7368  
##  Max.   :413.0800   Max.   :418.9700   Max.   :418.9700  
##   NFLX.Volume       
##  Min.   :   866300  
##  1st Qu.:  7126450  
##  Median : 12444600  
##  Mean   : 18683695  
##  3rd Qu.: 22590575  
##  Max.   :323414000

```