Go to Yahoo Finance and import Netflix stock prices from December 13, 2002 to July 31, 2018.

Q1 What is the closing price of the stock on December 13, 2002?

$0.89

# Load csv file
data.NFLX <- read.csv("data/NFLX.csv", header = TRUE)
head(data.NFLX)
##         Date     Open     High      Low    Close Adj.Close   Volume
## 1 2002-12-13 0.900000 0.914286 0.860714 0.892857  0.892857  1395800
## 2 2002-12-16 0.898571 0.927857 0.867857 0.913571  0.913571  2098600
## 3 2002-12-17 0.914286 0.927143 0.892857 0.906429  0.906429  1680000
## 4 2002-12-18 0.896429 0.898571 0.763571 0.785000  0.785000 13378400
## 5 2002-12-19 0.770714 0.799286 0.758571 0.771429  0.771429  3781400
## 6 2002-12-20 0.764286 0.771429 0.728571 0.764286  0.764286  4384800
tail(data.NFLX)
##            Date   Open   High    Low  Close Adj.Close   Volume
## 3929 2018-07-24 366.94 367.40 354.56 357.32    357.32 12851500
## 3930 2018-07-25 357.57 363.28 355.65 362.87    362.87  8467800
## 3931 2018-07-26 358.19 365.54 356.63 363.09    363.09  6993700
## 3932 2018-07-27 366.85 367.00 351.65 355.21    355.21  8949500
## 3933 2018-07-30 351.93 352.03 334.02 334.96    334.96 18260700
## 3934 2018-07-31 331.51 342.50 328.00 337.45    337.45 14085400

Convert the date variable from a Factor to a Date.

class(data.NFLX$Date)
## [1] "factor"
date <- as.Date(data.NFLX$Date, format = "%Y-%m-%d")
class(date)
## [1] "Date"

Combine date and data.NFLX.

data.NFLX <- cbind(date, data.NFLX[, -1])
head(data.NFLX)
##         date     Open     High      Low    Close Adj.Close   Volume
## 1 2002-12-13 0.900000 0.914286 0.860714 0.892857  0.892857  1395800
## 2 2002-12-16 0.898571 0.927857 0.867857 0.913571  0.913571  2098600
## 3 2002-12-17 0.914286 0.927143 0.892857 0.906429  0.906429  1680000
## 4 2002-12-18 0.896429 0.898571 0.763571 0.785000  0.785000 13378400
## 5 2002-12-19 0.770714 0.799286 0.758571 0.771429  0.771429  3781400
## 6 2002-12-20 0.764286 0.771429 0.728571 0.764286  0.764286  4384800
tail(data.NFLX)
##            date   Open   High    Low  Close Adj.Close   Volume
## 3929 2018-07-24 366.94 367.40 354.56 357.32    357.32 12851500
## 3930 2018-07-25 357.57 363.28 355.65 362.87    362.87  8467800
## 3931 2018-07-26 358.19 365.54 356.63 363.09    363.09  6993700
## 3932 2018-07-27 366.85 367.00 351.65 355.21    355.21  8949500
## 3933 2018-07-30 351.93 352.03 334.02 334.96    334.96 18260700
## 3934 2018-07-31 331.51 342.50 328.00 337.45    337.45 14085400

Sort the data in chronological order.

data.NFLX <- data.NFLX[order(data.NFLX$date),]
head(data.NFLX)
##         date     Open     High      Low    Close Adj.Close   Volume
## 1 2002-12-13 0.900000 0.914286 0.860714 0.892857  0.892857  1395800
## 2 2002-12-16 0.898571 0.927857 0.867857 0.913571  0.913571  2098600
## 3 2002-12-17 0.914286 0.927143 0.892857 0.906429  0.906429  1680000
## 4 2002-12-18 0.896429 0.898571 0.763571 0.785000  0.785000 13378400
## 5 2002-12-19 0.770714 0.799286 0.758571 0.771429  0.771429  3781400
## 6 2002-12-20 0.764286 0.771429 0.728571 0.764286  0.764286  4384800
tail(data.NFLX)
##            date   Open   High    Low  Close Adj.Close   Volume
## 3929 2018-07-24 366.94 367.40 354.56 357.32    357.32 12851500
## 3930 2018-07-25 357.57 363.28 355.65 362.87    362.87  8467800
## 3931 2018-07-26 358.19 365.54 356.63 363.09    363.09  6993700
## 3932 2018-07-27 366.85 367.00 351.65 355.21    355.21  8949500
## 3933 2018-07-30 351.93 352.03 334.02 334.96    334.96 18260700
## 3934 2018-07-31 331.51 342.50 328.00 337.45    337.45 14085400

Convert data.frame object to xts object.

Q2 How many variables (columns) does your data have after conversion?

Hint: Now that the data is converted to xts from data frame, the date column has become row names.

6 columns

class(data.NFLX)
## [1] "data.frame"
library(xts)
data.NFLX <- xts(data.NFLX[, 2:7], order.by = data.NFLX[, 1])
class(data.NFLX)
## [1] "xts" "zoo"

Rename variables


names(data.NFLX)
## [1] "Open"      "High"      "Low"       "Close"     "Adj.Close" "Volume"
names(data.NFLX) <- paste(c("NFLX.Open", "NFLX.High", "NFLX.Low", 
                            "NFLX.Close", "NFLX.Adjusted", "NFLX.Volume"))
head(data.NFLX)
##            NFLX.Open NFLX.High NFLX.Low NFLX.Close NFLX.Adjusted
## 2002-12-13  0.900000  0.914286 0.860714   0.892857      0.892857
## 2002-12-16  0.898571  0.927857 0.867857   0.913571      0.913571
## 2002-12-17  0.914286  0.927143 0.892857   0.906429      0.906429
## 2002-12-18  0.896429  0.898571 0.763571   0.785000      0.785000
## 2002-12-19  0.770714  0.799286 0.758571   0.771429      0.771429
## 2002-12-20  0.764286  0.771429 0.728571   0.764286      0.764286
##            NFLX.Volume
## 2002-12-13     1395800
## 2002-12-16     2098600
## 2002-12-17     1680000
## 2002-12-18    13378400
## 2002-12-19     3781400
## 2002-12-20     4384800
tail(data.NFLX)
##            NFLX.Open NFLX.High NFLX.Low NFLX.Close NFLX.Adjusted
## 2018-07-24    366.94    367.40   354.56     357.32        357.32
## 2018-07-25    357.57    363.28   355.65     362.87        362.87
## 2018-07-26    358.19    365.54   356.63     363.09        363.09
## 2018-07-27    366.85    367.00   351.65     355.21        355.21
## 2018-07-30    351.93    352.03   334.02     334.96        334.96
## 2018-07-31    331.51    342.50   328.00     337.45        337.45
##            NFLX.Volume
## 2018-07-24    12851500
## 2018-07-25     8467800
## 2018-07-26     6993700
## 2018-07-27     8949500
## 2018-07-30    18260700
## 2018-07-31    14085400

Plot the data

Q3 During what year (of the study period) did the stock reach the highest price?

2018 WAS THE HIGHEST STOCK PRICE.

plot(data.NFLX$NFLX.Close)

Q4 What is the highest price the stock ever reached? Consider only the study period.

Hint: Use the closing price in the summary statistics below.

$418.97

summary(data.NFLX)
##      Index              NFLX.Open          NFLX.High       
##  Min.   :2002-12-13   Min.   :  0.6929   Min.   :  0.7086  
##  1st Qu.:2006-11-08   1st Qu.:  3.7343   1st Qu.:  3.8243  
##  Median :2010-10-06   Median : 10.6107   Median : 10.8643  
##  Mean   :2010-10-07   Mean   : 45.9126   Mean   : 46.6075  
##  3rd Qu.:2014-09-03   3rd Qu.: 60.8068   3rd Qu.: 61.5161  
##  Max.   :2018-07-31   Max.   :421.3800   Max.   :423.2100  
##     NFLX.Low          NFLX.Close       NFLX.Adjusted     
##  Min.   :  0.6843   Min.   :  0.6907   Min.   :  0.6907  
##  1st Qu.:  3.6429   1st Qu.:  3.7286   1st Qu.:  3.7286  
##  Median : 10.3607   Median : 10.6179   Median : 10.6179  
##  Mean   : 45.1841   Mean   : 45.9355   Mean   : 45.9355  
##  3rd Qu.: 60.1032   3rd Qu.: 60.7368   3rd Qu.: 60.7368  
##  Max.   :413.0800   Max.   :418.9700   Max.   :418.9700  
##   NFLX.Volume       
##  Min.   :   866300  
##  1st Qu.:  7126450  
##  Median : 12444600  
##  Mean   : 18683695  
##  3rd Qu.: 22590575  
##  Max.   :323414000