Go to Yahoo Finance and import Netflix stock prices from December 13, 2002 to July 31, 2018.

Q1 What is the closing price of the stock on December 13, 2002?

The price of the stock at the end of the day on December 13, 2002 was about $0.893.

# Load csv file
data.NFLX <- read.csv("/resources/rstudio/Financial Modeling/Data/NFLX.csv", header = TRUE)
head(data.NFLX)
##         Date     Open     High      Low    Close Adj.Close   Volume
## 1 12/13/2002 0.900000 0.914286 0.860714 0.892857  0.892857  1395800
## 2 12/16/2002 0.898571 0.927857 0.867857 0.913571  0.913571  2098600
## 3 12/17/2002 0.914286 0.927143 0.892857 0.906429  0.906429  1680000
## 4 12/18/2002 0.896429 0.898571 0.763571 0.785000  0.785000 13378400
## 5 12/19/2002 0.770714 0.799286 0.758571 0.771429  0.771429  3781400
## 6 12/20/2002 0.764286 0.771429 0.728571 0.764286  0.764286  4384800
tail(data.NFLX)
##           Date   Open   High    Low  Close Adj.Close   Volume
## 3929 7/24/2018 366.94 367.40 354.56 357.32    357.32 12851500
## 3930 7/25/2018 357.57 363.28 355.65 362.87    362.87  8467800
## 3931 7/26/2018 358.19 365.54 356.63 363.09    363.09  6993700
## 3932 7/27/2018 366.85 367.00 351.65 355.21    355.21  8949500
## 3933 7/30/2018 351.93 352.03 334.02 334.96    334.96 18260700
## 3934 7/31/2018 331.51 342.50 328.00 337.45    337.45 14085400

Convert the date variable from a Factor to a Date.

class(data.NFLX$Date)
## [1] "factor"
date <- as.Date(data.NFLX$Date, format = "%m/%d/%Y")
class(date)
## [1] "Date"

Combine date and data.NFLX.

data.NFLX <- cbind(date, data.NFLX[, -1])
head(data.NFLX)
##         date     Open     High      Low    Close Adj.Close   Volume
## 1 2002-12-13 0.900000 0.914286 0.860714 0.892857  0.892857  1395800
## 2 2002-12-16 0.898571 0.927857 0.867857 0.913571  0.913571  2098600
## 3 2002-12-17 0.914286 0.927143 0.892857 0.906429  0.906429  1680000
## 4 2002-12-18 0.896429 0.898571 0.763571 0.785000  0.785000 13378400
## 5 2002-12-19 0.770714 0.799286 0.758571 0.771429  0.771429  3781400
## 6 2002-12-20 0.764286 0.771429 0.728571 0.764286  0.764286  4384800
tail(data.NFLX)
##            date   Open   High    Low  Close Adj.Close   Volume
## 3929 2018-07-24 366.94 367.40 354.56 357.32    357.32 12851500
## 3930 2018-07-25 357.57 363.28 355.65 362.87    362.87  8467800
## 3931 2018-07-26 358.19 365.54 356.63 363.09    363.09  6993700
## 3932 2018-07-27 366.85 367.00 351.65 355.21    355.21  8949500
## 3933 2018-07-30 351.93 352.03 334.02 334.96    334.96 18260700
## 3934 2018-07-31 331.51 342.50 328.00 337.45    337.45 14085400

Sort the data in chronological order.

data.NFLX <- data.NFLX[order(data.NFLX$date),]
head(data.NFLX)
##         date     Open     High      Low    Close Adj.Close   Volume
## 1 2002-12-13 0.900000 0.914286 0.860714 0.892857  0.892857  1395800
## 2 2002-12-16 0.898571 0.927857 0.867857 0.913571  0.913571  2098600
## 3 2002-12-17 0.914286 0.927143 0.892857 0.906429  0.906429  1680000
## 4 2002-12-18 0.896429 0.898571 0.763571 0.785000  0.785000 13378400
## 5 2002-12-19 0.770714 0.799286 0.758571 0.771429  0.771429  3781400
## 6 2002-12-20 0.764286 0.771429 0.728571 0.764286  0.764286  4384800
tail(data.NFLX)
##            date   Open   High    Low  Close Adj.Close   Volume
## 3929 2018-07-24 366.94 367.40 354.56 357.32    357.32 12851500
## 3930 2018-07-25 357.57 363.28 355.65 362.87    362.87  8467800
## 3931 2018-07-26 358.19 365.54 356.63 363.09    363.09  6993700
## 3932 2018-07-27 366.85 367.00 351.65 355.21    355.21  8949500
## 3933 2018-07-30 351.93 352.03 334.02 334.96    334.96 18260700
## 3934 2018-07-31 331.51 342.50 328.00 337.45    337.45 14085400

Convert data.frame object to xts object.

Q2 How many variables (columns) does your data have after conversion?

There are six colums in my data.

class(data.NFLX)
## [1] "data.frame"
library(xts)
data.NFLX <- xts(data.NFLX[, 2:7],order.by = data.NFLX[, 1])
class(data.NFLX)
## [1] "xts" "zoo"

Rename variables


names(data.NFLX)
## [1] "Open"      "High"      "Low"       "Close"     "Adj.Close" "Volume"
names(data.NFLX) <- paste(c("NFLX.Open", "NFLX.High", "NFLX.Low", 
                            "NFLX.Close", "NFLX.Adjusted", "NFLX.Volume"))
head(data.NFLX)
##            NFLX.Open NFLX.High NFLX.Low NFLX.Close NFLX.Adjusted
## 2002-12-13  0.900000  0.914286 0.860714   0.892857      0.892857
## 2002-12-16  0.898571  0.927857 0.867857   0.913571      0.913571
## 2002-12-17  0.914286  0.927143 0.892857   0.906429      0.906429
## 2002-12-18  0.896429  0.898571 0.763571   0.785000      0.785000
## 2002-12-19  0.770714  0.799286 0.758571   0.771429      0.771429
## 2002-12-20  0.764286  0.771429 0.728571   0.764286      0.764286
##            NFLX.Volume
## 2002-12-13     1395800
## 2002-12-16     2098600
## 2002-12-17     1680000
## 2002-12-18    13378400
## 2002-12-19     3781400
## 2002-12-20     4384800
tail(data.NFLX)
##            NFLX.Open NFLX.High NFLX.Low NFLX.Close NFLX.Adjusted
## 2018-07-24    366.94    367.40   354.56     357.32        357.32
## 2018-07-25    357.57    363.28   355.65     362.87        362.87
## 2018-07-26    358.19    365.54   356.63     363.09        363.09
## 2018-07-27    366.85    367.00   351.65     355.21        355.21
## 2018-07-30    351.93    352.03   334.02     334.96        334.96
## 2018-07-31    331.51    342.50   328.00     337.45        337.45
##            NFLX.Volume
## 2018-07-24    12851500
## 2018-07-25     8467800
## 2018-07-26     6993700
## 2018-07-27     8949500
## 2018-07-30    18260700
## 2018-07-31    14085400

Plot the data

Q3 During what year (of the study period) did the stock reach the highest price?

plot(data.NFLX$NFLX.Close)

Q4 What is the highest price the stock ever reached? Consider only the study period.

The high of the data was $423.210.

summary(data.NFLX)
##      Index              NFLX.Open          NFLX.High       
##  Min.   :2002-12-13   Min.   :  0.6929   Min.   :  0.7086  
##  1st Qu.:2006-11-08   1st Qu.:  3.7343   1st Qu.:  3.8243  
##  Median :2010-10-06   Median : 10.6107   Median : 10.8643  
##  Mean   :2010-10-07   Mean   : 45.9126   Mean   : 46.6075  
##  3rd Qu.:2014-09-03   3rd Qu.: 60.8068   3rd Qu.: 61.5161  
##  Max.   :2018-07-31   Max.   :421.3800   Max.   :423.2100  
##     NFLX.Low          NFLX.Close       NFLX.Adjusted     
##  Min.   :  0.6843   Min.   :  0.6907   Min.   :  0.6907  
##  1st Qu.:  3.6429   1st Qu.:  3.7286   1st Qu.:  3.7286  
##  Median : 10.3607   Median : 10.6179   Median : 10.6179  
##  Mean   : 45.1841   Mean   : 45.9355   Mean   : 45.9355  
##  3rd Qu.: 60.1032   3rd Qu.: 60.7368   3rd Qu.: 60.7368  
##  Max.   :413.0800   Max.   :418.9700   Max.   :418.9700  
##   NFLX.Volume       
##  Min.   :   866300  
##  1st Qu.:  7126450  
##  Median : 12444600  
##  Mean   : 18683695  
##  3rd Qu.: 22590575  
##  Max.   :323414000