library(pracma)
A <- matrix(c(1,-1,0,5,2,0,1,4,3,1,-2,-2,4,3,1,-3),ncol=4)
rref(A)## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] 0 1 0 0
## [3,] 0 0 1 0
## [4,] 0 0 0 1
b <- matrix(c(1,3,2,2,6,4,1,3,2),ncol=3)
rref(b)## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 0 0 0
## [3,] 0 0 0
\[ det (\lambda I_{n} -A)=0\]
\[\begin{equation*} \mathbf{}\left[\begin{matrix} \lambda -1 & -2&-3\\ 0 & \lambda -4 &-5 \\ 0 &0& \lambda -6 \end{matrix}\right] \end{equation*}\]
\[\begin{equation*} \mathbf{A*det}\left[\begin{matrix} \lambda -4 & -5 &\\ 0 & \lambda -6\\ \end{matrix}\right]-\mathbf{B*det}\left[\begin{matrix} \ 0&-5\\ 0&\lambda -6\\ \end{matrix}\right]+\mathbf{C*det}\left[\begin{matrix} \ 0&\lambda-4\\ 0&0\\ \end{matrix}\right] \end{equation*}\]
\[ \lambda -1(\lambda -4*\lambda -6)-(-5*0)-((0*\lambda -6) -(-5*0))+((0*0)-(\lambda -4 *0) ) \]
\[ (\lambda -1)(\lambda^{2}-10\lambda +24)=0\]
To get vectors we now need to plug eigen values in to original matrix \[\lambda I_{n} -A\]
eigenvalue 4 yields
\[\begin{equation*} \mathbf{}\left[\begin{matrix} 3 &-2&-3\\ 0 & 0 &-5 \\ 0 &0& -2\end{matrix}\right] \end{equation*}\]
C <- matrix(c(3,0,0,-2,0,0,-3,-5,-2),ncol=3)
rref(C)## [,1] [,2] [,3]
## [1,] 1 -0.6666667 0
## [2,] 0 0.0000000 1
## [3,] 0 0.0000000 0
\[ x-2/3y=0\] \[z=0\]
in terms of x our vector for eigenvalue \[\mathbf{E_4}= \left[\begin{array} {rrr} 1 \\ 3/2 \\ 0 \end{array}\right] \]
eigenvalue 6 yields
\[\begin{equation*} \mathbf{}\left[\begin{matrix} 5 & -2&-3\\ 0 & 2 &-5 \\ 0 &0&0 \end{matrix}\right] \end{equation*}\]
C <- matrix(c(5,0,0,-2,2,0,-3,-5,0),ncol=3)
rref(C)## [,1] [,2] [,3]
## [1,] 1 0 -1.6
## [2,] 0 1 -2.5
## [3,] 0 0 0.0
\[ x-(8/5z)=0\] \[ y-(5/2z)=0\]
\[\begin{equation*} \mathbf{}\left[\begin{matrix} 0 & -2&-3\\ 0 & -3 &-5 \\ 0 &0&-5 \end{matrix}\right] \end{equation*}\]
C <- matrix(c(0,0,0,-2,-3,0,-3,-5,-5),ncol=3)
rref(C)## [,1] [,2] [,3]
## [1,] 0 1 0
## [2,] 0 0 1
## [3,] 0 0 0
\[y=0\] \[z=0\]
\[\mathbf{E_1}= \left[\begin{array} {rrr} 1 \\ 0 \\ 0 \end{array}\right] \]