C11 Find the characteristic polynomial of the matrix A
\[\mathbf{A} = \left[\begin{array} {rrr} 3 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{array}\right]\]
Now solving for the determinant of \[A-\lambda*I=0\]
\[\mathbf \det \left[\begin{array} {rrr} \lambda-3 & 2 & 1 \\ 0 & \lambda-1 & 1 \\ 1 & 2 & \lambda-0 \end{array}\right]\]
A <- matrix(c(3,2,1,
0,1,1,
1,2,0), 3, byrow=T)
print(A)
## [,1] [,2] [,3]
## [1,] 3 2 1
## [2,] 0 1 1
## [3,] 1 2 0
library(pracma)
rref(A)
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
Rank(A)
## [1] 3
charpoly(A)
## [1] 1 -4 0 5