library(pracma)
A <- matrix(c(1,2,3,4,-1,0,1,3,0,1,-2,1,5,4,-2,-3), byrow = T, ncol = 4)
A
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] -1 0 1 3
## [3,] 0 1 -2 1
## [4,] 5 4 -2 -3
rref(A)
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] 0 1 0 0
## [3,] 0 0 1 0
## [4,] 0 0 0 1
Rank(A)
## [1] 4
The max rank cannot be greater than ‘n’. The min rank in this case (non-zero) is 1.
B <- matrix(c(1,2,1,3,6,3,2,4,2), byrow = T, ncol = 3)
B
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 3 6 3
## [3,] 2 4 2
Rank(B)
## [1] 1
Compute the eigenvalues and eigenvectors of the matrix A. You’ll need to show your work. You’ll need to write out the characteristic polynomial and show your solution.
A <- matrix(c(1,2,3,0,4,5,0,0,6), byrow = T, ncol = 3)
A
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 0 4 5
## [3,] 0 0 6
eigen(A)
## eigen() decomposition
## $values
## [1] 6 4 1
##
## $vectors
## [,1] [,2] [,3]
## [1,] 0.5108407 0.5547002 1
## [2,] 0.7981886 0.8320503 0
## [3,] 0.3192754 0.0000000 0
charpoly(A)
## [1] 1 -11 34 -24
\[A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\0 & 0 & 6\end{bmatrix}\]
\[\lambda I_{3} =\begin{bmatrix}\lambda & 0 & 0 \\0 & \lambda & 0 \\0 & 0 & \lambda\end{bmatrix}\]
\[ \lambda I_{3} - A =\begin{bmatrix}\lambda - 1 & -2 & -3 \\0 & \lambda - 4 & -5 \\0 & 0 & \lambda - 6 \end {bmatrix} \begin{bmatrix}\lambda - 1 & -2 \\0 & \lambda - 4 \\0 & 0 \end {bmatrix} \]
\((\lambda - 1) (\lambda - 4) (\lambda - 6) + (-2 \times -5 \times 0) + (3 \times 0 \times 0) -\) \((-2 \times 0 \times (\lambda - 6)) - ((\lambda - 1) \times - 5 \times - 0) - (-3 \times (\lambda - 4) \times 0) = 0\)
The eigenvalues are: \(= (\lambda - 1) (\lambda - 4) (\lambda - 6) = 0\)