EJERCICIO 1. INTRODUCCION
CARACTERISTICAS SERIE:
library(forecast)
library(ggplot2)
library(readxl)
base<-read_xls("C:/Users/rodar/OneDrive/Documents/MANUFACTURA.xls")
PM <-ts(base$PM, frequency = 3, start=c(2005,1))
autoplot(PM)
VEMOS QUE EL GRÁFICO RESULTANTE NO ES EL MÁS APROPIADO PARA DESCRIBIR UNA SERIE TEMPORAL
fit<-decompose(PM)
plot(fit)
PODEMOS OBSERVAR QUE LA GRAFICA MUESTRA ALEATORIEDAD.
ggseasonplot(PM)
EN ESTE CASO NOS DAMOS CUENTA QUE LA SERIE NO PRESENTA ESTACIONALIDAD, DEBIDO A QUE LA INDUSTRIA MANUFACTURERA NO DEPENDE DE CIERTOS FACTORES ESTACIONALES.
EJERCICIO 2. DESCOMPOSICION DE SERIES.
autoplot(PM,series= "Data")+autolayer(ma(PM,3),series="3-MA")+xlab("Year")+ggtitle("PRODUCCION MANUFACTURERA")
## Warning: Removed 2 rows containing missing values (geom_path).
autoplot(PM,series= "Data")+autolayer(ma(PM,5),series="5-MA")+xlab("Year")+ggtitle("PRODUCCION MANUFACTURERA")
## Warning: Removed 4 rows containing missing values (geom_path).
autoplot(PM,series= "Data")+autolayer(ma(PM,7),series="7-MA")+xlab("Year")+ggtitle("PRODUCCION MANUFACTURERA")
## Warning: Removed 6 rows containing missing values (geom_path).
autoplot(PM,series= "Data")+autolayer(ma(PM,9),series="9-MA")+xlab("Year")+ggtitle("PRODUCCION MANUFACTURERA")
## Warning: Removed 8 rows containing missing values (geom_path).
fit<-decompose(PM,type = 'additive')
autoplot(fit)
fit<-decompose(PM,type = 'multiplicative')
autoplot(fit)
autoplot(PM,series="Data")+autolayer(seasadj(fit),series="Seasonally adj. data")+xlab("Year")+ylab("New orders index")+ggtitle("Produccion manufacturera")
EJERCICIO 4. TENDENCIAS.
library(forecast)
library(TSA)
##
## Attaching package: 'TSA'
## The following objects are masked from 'package:stats':
##
## acf, arima
## The following object is masked from 'package:utils':
##
## tar
data(PM)
## Warning in data(PM): data set 'PM' not found
autoplot(PM)+ggtitle("PRODUCCION MANUFACTURERA")
plot(PM,type = 'l')
points(y=PM, x=time(PM),pch=as.vector(season(PM)))
ggseasonplot(PM)
mes. <- season(PM)
modelo1 <- lm(PM ~ mes. + time(PM) + I(time(PM)^2))
summary(modelo1)
##
## Call:
## lm(formula = PM ~ mes. + time(PM) + I(time(PM)^2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.9588 -0.9377 0.4520 1.3045 4.0477
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.169e+05 6.374e+04 -3.403 0.00133 **
## mes.Season-2 -3.832e-02 9.292e-01 -0.041 0.96727
## mes.Season-3 -4.370e-01 9.301e-01 -0.470 0.64053
## time(PM) 2.148e+02 6.330e+01 3.394 0.00137 **
## I(time(PM)^2) -5.316e-02 1.572e-02 -3.382 0.00142 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.787 on 49 degrees of freedom
## Multiple R-squared: 0.6857, Adjusted R-squared: 0.66
## F-statistic: 26.72 on 4 and 49 DF, p-value: 8.627e-12
b). Con una R-Squared= 0.6857. Nos indica que mayor es el ajuste del modelo con respecto a la variable PM.
Con una variable p-value: 8.627e-12. Rechazamos la Ho.
plot(y=rstandard(modelo1), x=time(PM), type='o')
qqnorm(rstandard(modelo1)); qqline(rstandard(modelo1))
shapiro.test(rstandard(modelo1))
##
## Shapiro-Wilk normality test
##
## data: rstandard(modelo1)
## W = 0.88199, p-value = 7.186e-05
ggAcf(rstandard(modelo1))
\[ PRODUCCION MANUFACTURERA= PM= \beta_0 + \beta_1 tiempo + \beta_2 tiempo^2 + meses + u \]