BASE DE DATOS

library(foreign)
base = read.csv(file.choose())
class(base)
## [1] "data.frame"

Base de datos del precio del petróleo crudo, fijado por la Organización de países exportadores de petróleo (OPEP).

Periodicidad

Se tienen registros a partir del mes de Agosto de 1993, en una frecuencia mensual.

Unidad de medida

Dólares americanos

DECLARAR COMO SERIE DE TIEMPO

PPDP <- ts(base$Precios, frequency = 12, start = c(1993,8))
class(PPDP)
## [1] "ts"

GRAFICA DE STN

library(forecast)
plot(PPDP, col = "red", main = "Precios del Barril Petróleo", ylab = "Dólares", xlab ="Tiempo", lwd=2, type="l", pch=10)

MEDIAS MOVILES

MEDIA MOVIL DE ORDEN 3

library(TSA)
## 
## Attaching package: 'TSA'
## The following objects are masked from 'package:stats':
## 
##     acf, arima
## The following object is masked from 'package:utils':
## 
##     tar
library(fpp2)
## Loading required package: ggplot2
## Loading required package: fma
## Loading required package: expsmooth
ma(PPDP, order = 3)
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 1993                                                                      
## 1994  13.89333  13.84333  14.16000  14.99333  16.17667  17.11000  17.35000
## 1995  16.75333  17.22333  17.80667  18.14000  18.14333  17.28667  16.63667
## 1996  17.79000  18.30000  19.25333  19.70667  19.41000  19.05333  19.51333
## 1997  22.42333  20.99333  19.21000  18.86000  18.39000  18.54000  18.31667
## 1998  15.39667  14.07333  13.57333  13.55000  13.33667  13.07000  12.55667
## 1999  10.86667  11.78667  13.26333  15.03333  16.10667  17.14667  18.55000
## 2000  25.87667  26.67333  26.06000  26.05000  26.76000  28.33000  29.02000
## 2001  26.13333  26.07333  25.99333  26.09667  26.74667  26.44000  25.86333
## 2002  19.21667  20.92333  23.01667  24.91333  25.19667  25.30333  25.67333
## 2003  30.50667  31.33000  29.60000  27.32667  26.51333  27.52333  28.73000
## 2004  30.89000  32.12333  32.90333  34.98000  35.60333  36.99667  38.50333
## 2005  42.27667  46.24333  48.80000  49.80333  50.78667  52.69667  57.38333
## 2006  59.53000  61.03000  62.86667  65.86000  68.31333  69.80667  70.85000
## 2007  57.35667  57.22667  61.07333  63.60667  66.13667  68.98333  70.64000
## 2008  91.20000  95.30667 101.33000 111.07667 120.97000 128.99333 126.30667
## 2009  42.34667  44.11667  46.25667  51.69333  59.19333  63.99000  68.48333
## 2010  75.58667  77.06000  79.41333  79.70000  78.17667  74.97667  75.04667
## 2011  93.53667  99.75000 107.60000 110.98667 110.05333 107.28000 104.75333
## 2012 107.99667 112.51667 114.71667 111.85000 102.83000  97.19000  97.58333
## 2013 104.64333 105.08667 103.00333 100.24667  99.32000 101.45667 104.38667
## 2014 104.13667 103.65667 104.58000 104.87333 106.31667 106.43667 104.55000
## 2015  54.20000  51.57667  55.05333  57.62667  60.45333  59.38667  53.78000
## 2016  32.46000  32.71667  36.37333  41.34333  44.79333  45.92000  45.56667
## 2017  53.52000  52.94667  52.47000  50.98333  49.40667  47.90667  47.92333
## 2018  63.62667  64.62000  65.47333  68.79667        NA                    
##            Aug       Sep       Oct       Nov       Dec
## 1993        NA  16.30000  15.87333  15.16333  14.36667
## 1994  17.02667  16.55667  16.58333  16.49667  16.64000
## 1995  16.45667  16.47000  16.56000  16.91000  17.47000
## 1996  20.76333  22.10333  22.75333  23.20667  23.08000
## 1997  18.56333  19.13333  19.26333  18.74000  17.06000
## 1998  12.99667  13.18333  12.98000  11.85000  11.24333
## 1999  20.65333  21.64000  22.93667  23.73667  24.85667
## 2000  29.84000  30.91333  31.93667  29.64333  27.83000
## 2001  25.27667  23.92000  21.54333  19.31333  18.78667
## 2002  26.93667  27.53000  26.78333  26.65333  27.72667
## 2003  28.38333  28.52333  28.33667  29.36667  30.15333
## 2004  40.52333  43.52000  43.53667  42.68333  41.38000
## 2005  59.98333  60.59000  58.30667  56.55333  57.97667
## 2006  68.79333  63.94667  59.39000  59.01333  57.55000
## 2007  73.49667  76.28667  83.35667  87.61000  90.51667
## 2008 115.68667  95.64000  75.44000  56.00000  46.39000
## 2009  68.21667  71.35333  73.32667  75.50333  76.51667
## 2010  75.51000  77.89000  80.79000  85.42000  89.07667
## 2011 103.07667 100.38667 102.02667 103.16333 105.57000
## 2012 102.76667 104.98667 103.62000 101.92333 102.48667
## 2013 107.39333 107.45000 105.60667 104.51333 103.40333
## 2014 100.37667  93.99333  86.30667  74.59000  61.60000
## 2015  48.77000  46.31000  45.45000  42.21333  36.48667
## 2016  44.68333  46.40333  46.53000  49.05667  50.49000
## 2017  50.18333  52.60333  55.93333  58.68000  62.45000
## 2018
autoplot(PPDP, series ="Data") + autolayer(ma(PPDP,3), series ="3-MA")+ xlab("Años") + ylab("Dólares") + ggtitle("Precios del barril del petróleo")
## Warning: Removed 2 rows containing missing values (geom_path).

p1<-autoplot(PPDP, series ="Data") + autolayer(ma(PPDP,3), series ="3-MA")+ xlab("Años") + ylab("Dólares") + ggtitle("Precios del barril del petróleo")

MEDIA MOVIL DE ORDEN 5

library(TSA)
library(fpp2)
ma(PPDP, order = 5)
##          Jan     Feb     Mar     Apr     May     Jun     Jul     Aug
## 1993                                                              NA
## 1994  14.100  14.076  14.578  15.186  16.006  16.682  16.906  16.944
## 1995  16.938  17.252  17.748  17.840  17.572  17.396  17.030  16.570
## 1996  17.902  18.686  18.924  19.066  19.444  19.652  19.972  20.882
## 1997  21.798  20.896  20.046  18.984  18.566  18.440  18.596  18.730
## 1998  15.680  14.562  13.950  13.446  13.166  13.040  13.100  12.946
## 1999  11.530  12.328  13.458  14.448  16.096  17.516  18.882  20.060
## 2000  25.856  25.718  26.136  26.998  27.190  27.544  29.266  30.108
## 2001  27.150  25.828  26.298  26.500  26.012  26.172  26.070  24.706
## 2002  19.996  21.344  22.774  23.842  24.996  25.624  26.194  26.566
## 2003  29.284  29.488  29.122  28.556  27.698  27.562  27.826  28.416
## 2004  31.092  32.010  33.528  34.362  35.674  37.356  38.934  40.798
## 2005  43.980  45.682  47.440  49.624  51.934  54.124  56.334  58.406
## 2006  58.912  61.498  63.948  65.114  67.664  69.840  68.670  66.516
## 2007  58.162  59.546  60.380  63.314  66.522  68.428  70.768  74.130
## 2008  93.356  96.840 103.462 111.628 119.516 122.062 120.242 110.254
## 2009  45.532  44.794  48.156  53.214  57.780  62.776  66.390  69.576
## 2010  76.722  78.048  78.196  77.718  77.682  76.988  75.376  76.596
## 2011  94.758 101.100 104.712 107.344 109.346 107.714 104.630 102.986
## 2012 109.438 111.090 111.062 107.794 104.606 102.102 100.624 100.488
## 2013 103.524 103.060 102.696 101.624 101.148 102.276 104.258 105.470
## 2014 103.816 104.264 104.310 105.564 105.644 104.846 103.042  99.116
## 2015  58.484  54.594  54.956  57.796  57.706  56.278  54.026  50.916
## 2016  35.566  35.094  36.968  40.550  43.170  44.678  45.536  46.206
## 2017  51.344  52.724  52.178  50.694  49.356  49.164  49.322  50.328
## 2018  62.996  64.768  67.216      NA      NA                        
##          Sep     Oct     Nov     Dec
## 1993      NA  15.574  15.104  14.680
## 1994  16.926  16.538  16.518  16.762
## 1995  16.446  16.804  17.070  17.246
## 1996  21.658  22.464  23.022  22.654
## 1997  18.964  18.716  17.976  17.064
## 1998  12.826  12.368  12.158  11.548
## 1999  21.614  22.836  23.844  24.748
## 2000  30.650  30.054  29.394  28.426
## 2001  23.050  21.794  20.460  19.414
## 2002  26.576  27.004  27.798  28.718
## 2003  28.656  28.932  29.270  30.160
## 2004  42.116  42.346  42.524  43.168
## 2005  58.636  58.648  58.762  58.364
## 2006  64.486  62.194  58.536  57.624
## 2007  78.760  81.944  86.056  89.382
## 2008  94.744  76.446  62.304  50.740
## 2009  71.256  73.298  74.396  75.678
## 2010  78.556  81.642  85.014  89.372
## 2011 102.898 102.160 103.476 105.850
## 2012 102.576 103.464 103.430 103.702
## 2013 106.048 106.092 104.880 104.094
## 2014  92.840  83.934  73.346  65.134
## 2015  47.276  43.722  40.540  37.490
## 2016  45.720  47.418  49.160  51.022
## 2017  53.080  55.786  59.044  61.146
## 2018
autoplot(PPDP, series= "Data") + autolayer(ma(PPDP, 5), series="5-MA") + xlab("Años") + ylab("Dólares") + ggtitle("Precios del barril del petróleo")
## Warning: Removed 4 rows containing missing values (geom_path).

p2<-autoplot(PPDP, series= "Data") + autolayer(ma(PPDP, 5), series="5-MA") + xlab("Años") + ylab("Dólares") + ggtitle("Precios del barril del petróleo")

MEDIA MOVIL DE ORDEN 7

ma(PPDP, order = 7)
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 1993                                                                      
## 1994  14.58571  14.55143  14.83286  15.42000  15.83000  16.17571  16.58286
## 1995  17.11571  17.39429  17.43429  17.45429  17.39286  17.30714  17.13143
## 1996  18.04143  18.46143  18.71429  18.96000  19.33714  19.98857  20.59000
## 1997  21.49714  20.89143  20.25286  19.49714  18.85000  18.59857  18.70000
## 1998  15.99143  15.13286  14.18857  13.56143  13.20286  13.16000  13.18000
## 1999  12.39714  12.79714  13.44143  14.66714  15.92857  17.63571  18.89000
## 2000  24.95714  25.70571  26.48571  26.92571  27.49000  28.18429  28.74286
## 2001  27.55286  27.00286  26.23714  26.18000  26.16000  25.87000  25.25714
## 2002  20.87714  21.58286  22.41143  23.44429  24.53429  25.72000  26.27571
## 2003  28.50143  28.29143  28.77429  28.87429  28.72143  27.86429  27.67143
## 2004  31.16857  32.39000  33.30714  34.43857  35.96857  37.43571  39.32286
## 2005  45.34571  45.48143  47.16143  49.63714  52.34000  54.75000  55.78571
## 2006  60.10286  61.60143  63.49429  65.78286  67.11857  67.46429  67.03286
## 2007  59.11143  60.14714  61.58286  63.38429  65.75714  68.50000  71.55286
## 2008  93.93000  99.73857 105.47857 111.66571 115.07714 115.97286 111.80857
## 2009  50.09000  48.01286  50.18143  53.51429  57.48143  61.26857  65.18714
## 2010  77.41000  77.63000  77.22714  77.18429  77.00000  77.19429  77.54000
## 2011  95.96429  99.72857 102.77429 105.33286 106.44714 106.86286 105.60571
## 2012 108.67286 109.27857 107.18143 106.11286 105.85571 104.94000 102.88571
## 2013 102.84000 102.26286 102.05857 102.64000 103.07714 103.23714 103.65286
## 2014 104.19714 104.23714 105.05714 105.02143 104.72857 103.44571 100.88000
## 2015  62.29143  58.92429  56.68429  55.77571  55.57286  54.35714  53.51857
## 2016  37.93429  37.78857  38.44286  39.52286  41.68000  43.68143  45.38857
## 2017  51.16714  51.25286  51.38286  50.67429  50.15286  49.95286  50.52714
## 2018  62.67000  65.31429        NA        NA        NA                    
##            Aug       Sep       Oct       Nov       Dec
## 1993        NA        NA        NA  15.11143  14.70286
## 1994  16.86857  16.82000  16.78143  16.71571  16.76571
## 1995  16.85857  16.78000  16.84286  17.07429  17.49286
## 1996  20.83714  21.48857  22.16286  22.28143  22.12286
## 1997  18.87286  18.54714  18.13000  17.52571  16.72857
## 1998  12.94857  12.43143  12.28286  12.00429  12.10143
## 1999  20.07429  21.36571  22.64000  23.81571  24.84714
## 2000  30.00857  29.72429  29.20143  29.06714  28.46143
## 2001  24.25286  22.96286  21.84571  21.15714  20.84571
## 2002  26.14857  26.46571  27.36000  28.37857  28.89000
## 2003  28.18000  28.73857  29.23143  29.62286  30.19286
## 2004  40.52571  40.73714  41.79857  42.78857  44.05429
## 2005  56.41429  57.64286  58.86714  59.34286  59.20571
## 2006  65.62857  64.53000  62.42000  60.29286  58.69143
## 2007  75.30714  78.78714  82.00143  84.82857  89.35857
## 2008 103.98143  92.36857  79.84571  66.84714  57.14429
## 2009  69.08286  71.47286  72.61143  74.05286  75.14857
## 2010  77.59000  79.64571  82.21143  85.54429  90.23286
## 2011 104.05857 103.51000 103.68429 104.36571 106.83714
## 2012 101.10000 100.68571 102.73857 104.29429 103.90143
## 2013 104.19286 105.06571 105.40286 105.34143 104.75286
## 2014  96.89714  90.46714  81.71571  74.51000  67.76429
## 2015  51.45714  47.75143  43.24714  39.91714  38.72429
## 2016  46.03286  46.98714  47.83000  49.29000  50.15000
## 2017  51.63714  53.25143  56.11714  58.37429  60.40714
## 2018
autoplot(PPDP, series= "Data") + autolayer(ma(PPDP, 7), series="7-MA") + xlab("Años") + ylab("Dólares") + ggtitle("Precio del barril de petróleo")
## Warning: Removed 6 rows containing missing values (geom_path).

p3<-autoplot(PPDP, series= "Data") + autolayer(ma(PPDP, 7), series="7-MA") + xlab("Años") + ylab("Dólares") + ggtitle("Precio del barril de petróleo")

MEDIA MOVIL DE ORDEN 9

ma(PPDP, order = 9)
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 1993                                                                      
## 1994  14.92000  15.06111  15.21222  15.41222  15.68222  15.94222  16.30889
## 1995  17.15889  17.28778  17.24444  17.17667  17.27444  17.18778  17.11222
## 1996  18.01889  18.20667  18.59222  19.00333  19.49111  20.13667  20.65778
## 1997  21.34556  20.86333  20.27667  19.86667  19.31556  18.96111  18.81333
## 1998  16.07000  15.38333  14.56778  13.83444  13.46889  13.27556  13.02889
## 1999  12.96000  13.24778  13.88444  14.81667  16.18222  17.35000  18.84000
## 2000  24.95444  25.72333  26.41556  26.98222  27.75778  28.43444  29.00222
## 2001  28.05556  27.48778  26.75444  26.03111  26.03222  25.45111  24.50111
## 2002  21.89111  21.81111  22.36889  23.26778  24.35222  25.28333  25.79000
## 2003  28.20556  28.16556  28.28333  28.85444  28.74222  28.54889  28.13111
## 2004  31.40222  32.36444  33.35111  34.79111  36.08333  37.80667  39.00667
## 2005  45.20556  46.57111  47.62556  49.82111  52.33778  54.02889  55.16444
## 2006  61.23222  61.96556  63.55000  65.41333  66.04556  65.54000  65.36667
## 2007  60.11778  60.79222  62.53556  63.86778  65.62000  68.78111  72.53444
## 2008  95.21111 101.29556 106.94667 109.52778 110.65444 108.65444 104.27444
## 2009  56.49333  53.10333  52.21222  54.17444  57.17556  60.53333  64.50111
## 2010  76.20444  76.91333  76.96889  76.77778  76.91556  77.42667  78.51222
## 2011  95.10444  98.40778 101.31889 103.09222 104.29333 105.08889 105.92222
## 2012 107.29111 106.17000 105.82556 105.81000 106.03778 105.63111 104.35111
## 2013 102.83667 102.11000 102.31556 103.09222 103.93333 103.97000 103.41333
## 2014 104.87222 104.82889 104.80667 104.52000 103.45000 101.67000  98.57667
## 2015  66.04444  62.20667  58.68000  55.20222  53.60000  53.58333  52.28556
## 2016  39.75111  39.90778  39.59333  39.79000  40.73111  42.89889  44.48000
## 2017  50.34444  50.47000  50.28889  50.80889  50.84556  50.99333  51.61333
## 2018  62.78556        NA        NA        NA        NA                    
##            Aug       Sep       Oct       Nov       Dec
## 1993        NA        NA        NA        NA  14.94222
## 1994  16.56667  16.76889  16.89556  16.91556  17.00111
## 1995  17.17000  17.07556  16.99556  17.22222  17.73111
## 1996  21.12667  21.41222  21.56333  21.65444  21.46444
## 1997  18.56444  18.24444  17.65889  17.12556  16.58889
## 1998  12.72778  12.49889  12.13444  12.21111  12.56333
## 1999  20.16556  21.21444  22.45444  23.68778  24.18556
## 2000  28.74778  29.02444  29.03000  28.51889  28.24556
## 2001  23.77889  23.04889  22.20778  21.83778  21.90778
## 2002  26.26222  26.85333  27.65444  28.30667  28.28556
## 2003  28.08778  28.73333  29.31889  29.95778  30.52667
## 2004  39.60333  40.63222  41.43889  43.15000  44.56667
## 2005  55.77444  57.08778  58.40667  59.18889  60.47778
## 2006  65.37333  63.76778  62.53222  61.67778  60.85667
## 2007  75.74778  78.59556  81.73222  85.47111  89.37778
## 2008  97.55222  90.34111  81.36444  71.93444  62.76222
## 2009  67.63778  70.62000  72.46556  73.59333  75.76111
## 2010  79.70222  80.64778  83.12444  86.89333  91.52222
## 2011 105.43111 104.41222 104.92556 106.25222 106.89111
## 2012 102.50667 101.55444 101.94889 103.25889 103.49222
## 2013 103.74222 104.10333 104.71000 105.18778 105.14444
## 2014  93.76111  87.34333  81.68556  75.51444  70.21556
## 2015  50.47889  47.39444  43.89667  41.23333  39.72333
## 2016  46.17778  47.60444  48.53889  48.89556  49.78778
## 2017  52.75667  54.32000  55.82778  57.82778  60.17556
## 2018
autoplot(PPDP, series ="Data") + autolayer(ma(PPDP,9), series ="9-MA")+ xlab("Años") + ylab("Dólares") + ggtitle("Precio del barril de petróleo")
## Warning: Removed 8 rows containing missing values (geom_path).

p4<-autoplot(PPDP, series ="Data") + autolayer(ma(PPDP,9), series ="9-MA")+ xlab("Años") + ylab("Dólares") + ggtitle("Precio del barril de petróleo")
library(gridExtra)
grid.arrange (p1, p2, p3, p4)
## Warning: Removed 2 rows containing missing values (geom_path).
## Warning: Removed 4 rows containing missing values (geom_path).
## Warning: Removed 6 rows containing missing values (geom_path).
## Warning: Removed 8 rows containing missing values (geom_path).

DESCOMPOSICION CLASICA ADITIVA

fit <- decompose(PPDP, type = "additive")
autoplot(fit)

Se ve en la descomposición que los datos presentan estacionalidad y a lo largo de 1993 los precios del petroleo han tenido un incremento.

autoplot (PPDP, series ="Data") + autolayer(seasadj(fit), series = "Seasonally adj. data") + xlab("Años") + ylab("Dólares")+ ggtitle("Datos Estacionalmente Ajustados de Precios del barril de petróleo")