library(pracma)
Problem set 1
A <- matrix(c(1,2,3,4,-1,0,1,3,0,1,-2,1,5,4,-2,-3), nrow=4, byrow=TRUE)
A
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] -1 0 1 3
## [3,] 0 1 -2 1
## [4,] 5 4 -2 -3
1) What is the rank of the matrix A?
x <- qr(A)
Rank_A <- x$rank
Rank_A
## [1] 4
2)Given an mxn matrix where m > n, what can be the maximum rank? The minimum rank, assuming that the matrix is non-zero?
3)What is the rank of matrix B?
B <- matrix(c(1, 2, 1, 3, 6, 3, 2, 4, 2), nrow = 3, ncol = 3, byrow = TRUE)
B
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 3 6 3
## [3,] 2 4 2
y <- qr(B)
Rank_B <- y$rank
Rank_B
## [1] 1
Problem set 2
A <- matrix(c( 1, 2, 3, 0, 4, 5, 0, 0, 6), nrow = 3, ncol = 3, byrow = TRUE)
A
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 0 4 5
## [3,] 0 0 6
Compute the eigenvalues and eigenvectors of the matrix A. You’ll need to show your work. You’ll need to write out the characteristic polynomial and show your solution.
eigen(A)$values
## [1] 6 4 1
vec<-eigen(A)$vectors
vec
## [,1] [,2] [,3]
## [1,] 0.5108407 0.5547002 1
## [2,] 0.7981886 0.8320503 0
## [3,] 0.3192754 0.0000000 0