State cases

Data

The data came from two NH county superior courts: Belknap and Concord.

List of defendants

library(tidyverse)

data <- read.csv("data/NH.csv", skip = 1) # 1st row is the description of variables

# Select 2 variables: 1) case type and 2) defendant names
data <- 
  data %>% 
  select(CaseType, DNames, PNames) 
colnames(data) <- c("CaseType", "D", "P")
str(data)
## 'data.frame':    409 obs. of  3 variables:
##  $ CaseType: Factor w/ 41 levels "1","10","10; 26",..: 9 13 28 28 22 11 11 11 11 11 ...
##  $ D       : Factor w/ 398 levels "223 D.W. Highway, LLC",..: 347 374 208 239 123 358 149 285 1 66 ...
##  $ P       : Factor w/ 344 levels "A.O. Phaneuf & Son Funeral Home and Crematorium, Inc.; Cremation Society of New Hampshire, Inc.; Arthur Phaneuf",..: 21 236 259 259 15 71 72 157 207 12 ...
head(data)
##   CaseType                  D
## 1       17  Stephanie Michaud
## 2       21    Town of Gilford
## 3        4   Jennifer Colwell
## 4        4    Kevin D. Rooney
## 5       34     Deborah Foote 
## 6        2 Terrence J. Coyman
##                                                   P
## 1                                 Anthony Signorine
## 2 Monique A. Twomey Revocable Trust; Monique Twomey
## 3          Paugus Bay Plaza Condominium Association
## 4          Paugus Bay Plaza Condominium Association
## 5                American Modern Home Insurance Co.
## 6                                  Concord Hospital

Transform data

Transform so that the row represents businesses instead of court cases.

dataT_Def <-
  data %>%
  select(-P) %>%
  separate(D, c("D1","D2","D3","D4","D5","D6","D7","D8","D9","D10"), 
           sep = ";", extra = "merge") %>%
  gather("D", "Dname", 2:11) %>%
  select(-D) %>%
  filter(!is.na(Dname))
## Warning: Expected 10 pieces. Missing pieces filled with `NA` in 407
## rows [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
## 20, ...].

str(dataT_Def)
## 'data.frame':    730 obs. of  2 variables:
##  $ CaseType: Factor w/ 41 levels "1","10","10; 26",..: 9 13 28 28 22 11 11 11 11 11 ...
##  $ Dname   : chr  "Stephanie Michaud" "Town of Gilford" "Jennifer Colwell" "Kevin D. Rooney" ...
head(dataT_Def)
##   CaseType              Dname
## 1       17  Stephanie Michaud
## 2       21    Town of Gilford
## 3        4   Jennifer Colwell
## 4        4    Kevin D. Rooney
## 5       34     Deborah Foote 
## 6        2 Terrence J. Coyman
summary(dataT_Def)
##     CaseType      Dname          
##  2      :160   Length:730        
##  47     : 67   Class :character  
##  4      : 65   Mode  :character  
##  38     : 53                     
##  37     : 42                     
##  40     : 37                     
##  (Other):306

Which businesses got sued most?

dataT_Def %>%
  mutate_if(is.character, factor) %>%
  group_by(Dname) %>%
  summarise(n = n()) %>%
  arrange(desc(n)) %>%
  head(20)
## # A tibble: 20 x 2
##    Dname                                                                 n
##    <fctr>                                                            <int>
##  1 Town of Gilford                                                       6
##  2 " Aaron Olson"                                                        3
##  3 " Huggins Hospital"                                                   3
##  4 " Barry Cynewski"                                                     2
##  5 " Brenda M. Stowe"                                                    2
##  6 " Brian Littizzio"                                                    2
##  7 " Clough Development, LLC"                                            2
##  8 " Clough Work Force Housing Limited Partnership"                      2
##  9 " Glenridge, LLC"                                                     2
## 10 " KMO Associates, LLC"                                                2
## 11 " KMO Associates, LP"                                                 2
## 12 AEO Associates, LLC                                                   2
## 13 Amanda Cynewski, Attorney in Fact Under Durable Power of Attorne~     2
## 14 Bank of New England                                                   2
## 15 Barry K. Meyers                                                       2
## 16 Barry Myers                                                           2
## 17 Brazilian Resources, Inc.                                             2
## 18 Brian James Carpentry, LLC                                            2
## 19 City of Laconia                                                       2
## 20 LASC, Inc.                                                            2

List of Plaintiffs

Transform data

Transform so that the row represents businesses instead of court cases.

dataT_Pl <-
  data %>%
  select(-D) %>%
  separate(P, c("P1","P2","P3","P4","P5","P6","P7","P8","P9","P10"), 
           sep = ";", extra = "merge") %>%
  gather("P", "Pname", 2:11) %>%
  select(-P) %>%
  filter(!is.na(Pname))
## Warning: Expected 10 pieces. Missing pieces filled with `NA` in 408
## rows [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
## 20, ...].

str(dataT_Pl)
## 'data.frame':    494 obs. of  2 variables:
##  $ CaseType: Factor w/ 41 levels "1","10","10; 26",..: 9 13 28 28 22 11 11 11 11 11 ...
##  $ Pname   : chr  "Anthony Signorine" "Monique A. Twomey Revocable Trust" "Paugus Bay Plaza Condominium Association" "Paugus Bay Plaza Condominium Association" ...
head(dataT_Pl)
##   CaseType                                    Pname
## 1       17                        Anthony Signorine
## 2       21        Monique A. Twomey Revocable Trust
## 3        4 Paugus Bay Plaza Condominium Association
## 4        4 Paugus Bay Plaza Condominium Association
## 5       34       American Modern Home Insurance Co.
## 6        2                         Concord Hospital
summary(dataT_Pl)
##     CaseType      Pname          
##  2      :121   Length:494        
##  37     : 47   Class :character  
##  38     : 46   Mode  :character  
##  4      : 37                     
##  47     : 37                     
##  35     : 29                     
##  (Other):177

Which businesses had to sue most?

It’s interesting that the plaintiff’s list is dominated by financial institutions.

dataT_Pl %>%
  mutate_if(is.character, factor) %>%
  group_by(Pname) %>%
  summarise(n = n()) %>%
  arrange(desc(n)) %>%
  head(20)
## # A tibble: 20 x 2
##    Pname                                        n
##    <fctr>                                   <int>
##  1 Discover Bank                               14
##  2 Paugus Bay Plaza Condominium Association     8
##  3 Barcklay Bank Delaware                       7
##  4 American Express Centurion Bank              6
##  5 Concord Hospital                             6
##  6 American Express                             5
##  7 Bank of New Hampshire                        5
##  8 " Monique Twomey"                            4
##  9 American Express Bank FSB                    4
## 10 Monique A. Twomey Revocable Trust            4
## 11 Office of the Attorney General               4
## 12 " Mark Norby"                                2
## 13 " Park Construction Corporation"             2
## 14 " Steven Bauher"                             2
## 15 " Steven Norby"                              2
## 16 Alan Hawley                                  2
## 17 Concord Hospital, Inc.                       2
## 18 David Norby                                  2
## 19 General Linen Service Co, Inc.               2
## 20 Huggins Hospital                             2

Who are the banks suing?

They seems to be all individual citizens.

data %>%
  filter(P %in% c("Discover Bank",
                  "Barcklay Bank Delaware",
                  "American Express Centurion Bank",
                  "American Express")) %>%
  group_by(D) %>%
  summarise(n = n())
## # A tibble: 31 x 2
##    D                                                                 n
##    <fctr>                                                        <int>
##  1 Alton Transmission and Auto Repair Service, LLC; Wayne Gordon     1
##  2 Anne Cook                                                         1
##  3 Anne Soucy                                                        1
##  4 Bradley Preston                                                   1
##  5 Charles Trites                                                    1
##  6 David Pabst                                                       1
##  7 Don Chin                                                          1
##  8 Douglas White                                                     1
##  9 Eileen Cusick                                                     1
## 10 Elaine Wakefield                                                  1
## # ... with 21 more rows

What are the banks suing for?

They are all contract - collection. I think you would have figured that already.

data %>%
  filter(P %in% c("Discover Bank",
                  "Barcklay Bank Delaware",
                  "American Express Centurion Bank",
                  "American Express")) %>%
  group_by(CaseType) %>%
  summarise(n = n())
## # A tibble: 1 x 2
##   CaseType     n
##   <fctr>   <int>
## 1 2           31

Federal cases

Data

The data we are using here are obtained from the different sources: the federal judiciary center and the free law project.

# Import data
data <- read.csv("data/data_merged.csv")

# Sturecture of data
str(data)
## 'data.frame':    4200 obs. of  51 variables:
##  $ CIRCUIT       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ DISTRICT      : int  2 2 2 2 2 2 2 2 2 2 ...
##  $ OFFICE        : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ DOCKET        : int  265 409 100015 100016 100018 100019 100020 100028 100030 100031 ...
##  $ ORIGIN        : int  4 4 1 1 5 1 1 5 1 1 ...
##  $ FILEDATE      : Factor w/ 2566 levels "1/1/2012","1/10/2001",..: 1107 1237 2 2 18 18 18 85 85 85 ...
##  $ FILEYEAR      : int  2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
##  $ FDATEUSE      : Factor w/ 204 levels "1/1/2001","1/1/2002",..: 86 103 1 1 1 1 1 1 1 1 ...
##  $ JURIS         : int  3 4 1 1 4 3 4 4 4 4 ...
##  $ NOS           : int  840 190 190 190 190 440 110 365 365 365 ...
##  $ TITLE         : Factor w/ 33 levels "-8","0","10",..: 5 13 13 13 13 20 13 20 13 13 ...
##  $ SECTION       : Factor w/ 144 levels "-8","1","10",..: 10 20 27 27 20 73 22 138 20 20 ...
##  $ SUBSECT       : Factor w/ 73 levels "-8","1","12",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ RESIDENC      : int  -8 43 -8 -8 25 -8 52 55 15 15 ...
##  $ CLASSACT      : int  -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 ...
##  $ DEMANDED      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FILEJUDG      : logi  NA NA NA NA NA NA ...
##  $ FILEMAG       : logi  NA NA NA NA NA NA ...
##  $ COUNTY        : int  99999 33015 33013 33013 88888 88888 88888 88888 33007 33015 ...
##  $ ARBIT         : Factor w/ 4 levels "-8","E","M","V": 1 1 1 1 1 1 1 1 1 1 ...
##  $ MDLDOCK       : int  -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 ...
##  $ PLT           : Factor w/ 3128 levels "-8","108 DEGREES. LLC",..: 2968 1362 2944 2944 1546 268 85 1813 2166 1767 ...
##  $ DEF           : Factor w/ 3369 levels "-8",", ET AL",..: 1024 1637 993 2405 3274 649 2845 76 118 119 ...
##  $ TRANSDAT      : logi  NA NA NA NA NA NA ...
##  $ TRANSOFF      : int  -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 ...
##  $ TRANSDOC      : int  -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 ...
##  $ TRANSORG      : int  -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 ...
##  $ TERMDATE      : Factor w/ 2560 levels "1/10/2002","1/10/2003",..: 1184 2184 1584 1191 1082 2161 2042 1013 1100 1043 ...
##  $ TDATEUSE      : Factor w/ 204 levels "1/1/2001","1/1/2002",..: 86 171 120 86 86 171 154 69 86 69 ...
##  $ TRCLACT       : int  -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 ...
##  $ TERMJUDG      : logi  NA NA NA NA NA NA ...
##  $ TERMMAG       : logi  NA NA NA NA NA NA ...
##  $ PROCPROG      : int  5 4 2 2 2 2 5 2 1 2 ...
##  $ DISP          : int  5 13 18 18 14 3 6 14 10 12 ...
##  $ NOJ           : int  2 -8 0 0 -8 -8 2 -8 -8 -8 ...
##  $ AMTREC        : int  5 54 0 0 0 0 33 0 0 0 ...
##  $ JUDGMENT      : int  1 -8 -8 -8 -8 -8 2 -8 -8 -8 ...
##  $ DJOINED       : Factor w/ 1512 levels "","1/10/2005",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ PRETRIAL      : Factor w/ 418 levels "","1/10/2012",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ TRIBEGAN      : Factor w/ 40 levels "","1/20/2016",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ TRIALEND      : Factor w/ 83 levels "","1/13/2004",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ TRMARB        : int  -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 ...
##  $ PROSE         : int  0 0 0 0 0 1 2 0 0 0 ...
##  $ IFP           : Factor w/ 2 levels "-8","FP": 1 1 1 1 1 1 1 1 1 1 ...
##  $ STATUSCD      : Factor w/ 1 level "L": 1 1 1 1 1 1 1 1 1 1 ...
##  $ TAPEYEAR      : int  2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
##  $ nature_of_suit: Factor w/ 44 levels "ADMINISTRATIVE PROCEDURE ACT/REVIEW OR APPEAL OF AGENCY DECISION",..: 43 29 29 29 29 28 19 36 36 36 ...
##  $ busType_def   : Factor w/ 5 levels "CORP","LLC","PARTNERSHIP",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ busType_plt   : Factor w/ 4 levels "CORP","LLC","PARTNERSHIP",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ busType       : Factor w/ 3 levels "Both","Neither",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ cause         : Factor w/ 173 levels "","0.415277778",..: NA NA NA NA NA NA NA NA NA NA ...
summary(data)
##     CIRCUIT     DISTRICT     OFFICE      DOCKET            ORIGIN      
##  Min.   :1   Min.   :2   Min.   :1   Min.   :     73   Min.   : 1.000  
##  1st Qu.:1   1st Qu.:2   1st Qu.:1   1st Qu.: 400138   1st Qu.: 1.000  
##  Median :1   Median :2   Median :1   Median : 800364   Median : 1.000  
##  Mean   :1   Mean   :2   Mean   :1   Mean   : 855885   Mean   : 1.467  
##  3rd Qu.:1   3rd Qu.:2   3rd Qu.:1   3rd Qu.:1200343   3rd Qu.: 2.000  
##  Max.   :1   Max.   :2   Max.   :1   Max.   :9900606   Max.   :13.000  
##                                                                        
##        FILEDATE       FILEYEAR         FDATEUSE        JURIS      
##  9/16/2002 :  10   Min.   :2001   10/1/2002:  50   Min.   :1.000  
##  11/25/2003:   9   1st Qu.:2004   5/1/2002 :  40   1st Qu.:3.000  
##  9/24/2002 :   8   Median :2008   9/1/2002 :  40   Median :3.000  
##  11/23/2010:   7   Mean   :2008   10/1/2003:  36   Mean   :3.315  
##  5/7/2004  :   7   3rd Qu.:2012   4/1/2013 :  36   3rd Qu.:4.000  
##  11/23/2004:   6   Max.   :2017   6/1/2005 :  34   Max.   :4.000  
##  (Other)   :4153                  (Other)  :3964                  
##       NOS            TITLE         SECTION        SUBSECT    
##  Min.   :110.0   28     :2717   1332   :1147   -8     :1562  
##  1st Qu.:350.0   42     : 656   1441   : 912   CV     : 430  
##  Median :440.0   15     : 396   1983   : 355   PI     : 269  
##  Mean   :443.9   29     : 112   1331   : 322   BC     : 249  
##  3rd Qu.:446.0   17     :  63   1692   : 163   ED     : 229  
##  Max.   :899.0   47     :  55   2000   : 146   OC     : 177  
##                  (Other): 201   (Other):1155   (Other):1284  
##     RESIDENC         CLASSACT         DEMANDED       FILEJUDG      
##  Min.   :-8.000   Min.   :-8.000   Min.   :   0.00   Mode:logical  
##  1st Qu.:-8.000   1st Qu.:-8.000   1st Qu.:   0.00   NA's:4200     
##  Median :-8.000   Median :-8.000   Median :   0.00                 
##  Mean   : 6.339   Mean   :-7.916   Mean   :   2.64                 
##  3rd Qu.:15.000   3rd Qu.:-8.000   3rd Qu.:   0.00                 
##  Max.   :64.000   Max.   : 1.000   Max.   :5000.00                 
##                                                                    
##  FILEMAG            COUNTY      ARBIT        MDLDOCK        
##  Mode:logical   Min.   :33001   -8:4180   Min.   :  -8.000  
##  NA's:4200      1st Qu.:33011   E :   7   1st Qu.:  -8.000  
##                 Median :33013   M :   5   Median :  -8.000  
##                 Mean   :46637   V :   8   Mean   :   9.216  
##                 3rd Qu.:33019             3rd Qu.:  -8.000  
##                 Max.   :99999             Max.   :2320.000  
##                                                             
##             PLT                                   DEF       TRANSDAT      
##  USA          :  82   -8                            :  61   Mode:logical  
##  -8           :  20   TYCO INTERNATIONAL, ET AL     :  34   NA's:4200     
##  DIRECTV, INC.:  20   USA                           :  34                 
##  AMATUCCI     :  17   GUTIERREZ, ET AL              :  12                 
##  WILSON       :  15   NH DEPARTMENT OF HEALTH AND HU:  12                 
##  JOHNSON      :  13   SEALED                        :  11                 
##  (Other)      :4033   (Other)                       :4036                 
##     TRANSOFF     TRANSDOC     TRANSORG        TERMDATE         TDATEUSE   
##  Min.   :-8   Min.   :-8   Min.   :-8   2/4/2015  :  13   3/1/2006 :  43  
##  1st Qu.:-8   1st Qu.:-8   1st Qu.:-8   3/3/2006  :  13   12/1/2011:  42  
##  Median :-8   Median :-8   Median :-8   10/14/2004:   9   4/1/2003 :  35  
##  Mean   :-8   Mean   :-8   Mean   :-8   3/6/2006  :   9   10/1/2003:  34  
##  3rd Qu.:-8   3rd Qu.:-8   3rd Qu.:-8   12/19/2011:   8   10/1/2006:  33  
##  Max.   :-8   Max.   :-8   Max.   :-8   2/1/2016  :   7   3/1/2005 :  33  
##                                         (Other)   :4141   (Other)  :3980  
##     TRCLACT       TERMJUDG       TERMMAG           PROCPROG     
##  Min.   :-8.000   Mode:logical   Mode:logical   Min.   : 1.000  
##  1st Qu.:-8.000   NA's:4200      NA's:4200      1st Qu.: 2.000  
##  Median :-8.000                                 Median : 5.000  
##  Mean   :-7.854                                 Mean   : 4.229  
##  3rd Qu.:-8.000                                 3rd Qu.: 5.000  
##  Max.   : 3.000                                 Max.   :13.000  
##                                                                 
##       DISP           NOJ             AMTREC           JUDGMENT    
##  Min.   : 0.0   Min.   :-8.000   Min.   :   0.00   Min.   :-8.00  
##  1st Qu.: 6.0   1st Qu.:-8.000   1st Qu.:   0.00   1st Qu.:-8.00  
##  Median :13.0   Median : 0.000   Median :   0.00   Median : 0.00  
##  Mean   :10.5   Mean   :-3.177   Mean   :  35.09   Mean   :-3.25  
##  3rd Qu.:13.0   3rd Qu.: 0.000   3rd Qu.:   0.00   3rd Qu.: 0.00  
##  Max.   :20.0   Max.   : 6.000   Max.   :9999.00   Max.   : 4.00  
##                                                                   
##        DJOINED           PRETRIAL         TRIBEGAN         TRIALEND   
##            :2163             :3717            :4160            :4118  
##  7/1/2013  :   8   10/12/2011:   7   2/17/2016:   2   1/13/2004:   1  
##  11/14/2011:   6   10/24/2011:   4   1/20/2016:   1   1/20/2016:   1  
##  10/12/2006:   5   3/5/2012  :   4   1/4/2011 :   1   1/23/2007:   1  
##  10/22/2004:   5   11/24/2009:   3   1/6/2015 :   1   1/27/2009:   1  
##  5/14/2007 :   5   12/16/2011:   3   1/6/2016 :   1   1/27/2016:   1  
##  (Other)   :2008   (Other)   : 462   (Other)  :  34   (Other)  :  77  
##      TRMARB       PROSE       IFP       STATUSCD    TAPEYEAR   
##  Min.   :-8   Min.   :0.000   -8:3943   L:4200   Min.   :2001  
##  1st Qu.:-8   1st Qu.:0.000   FP: 257            1st Qu.:2005  
##  Median :-8   Median :0.000                      Median :2009  
##  Mean   :-8   Mean   :0.221                      Mean   :2009  
##  3rd Qu.:-8   3rd Qu.:0.000                      3rd Qu.:2013  
##  Max.   :-8   Max.   :3.000                      Max.   :2018  
##                                                                
##                  nature_of_suit      busType_def        busType_plt  
##  OTHER CONTRACT ACTIONS : 610   CORP       : 877   CORP       : 409  
##  OTHER CIVIL RIGHTS     : 574   LLC        : 390   LLC        : 264  
##  CIVIL RIGHTS JOBS      : 437   PARTNERSHIP:  30   PARTNERSHIP:   4  
##  OTHER PERSONAL INJURY  : 356   PC         :   6   PC         :   9  
##  OTHER STATUTORY ACTIONS: 344   PLLC       :   2   NA's       :3514  
##  INSURANCE              : 245   NA's       :2895                     
##  (Other)                :1634                                        
##      busType                                                    cause     
##  Both    : 275   42:1983 Civil Rights Act                          : 183  
##  Neither :2484   28:1332 Diversity-Personal Injury                 :  79  
##  Only one:1441   28:1332 Diversity-Breach of Contract              :  78  
##                  28:1441  Petition for Removal - Employment Discrim:  70  
##                  28:1331 Federal Question: Other Civil Rights      :  68  
##                  (Other)                                           :1250  
##                  NA's                                              :2472

List of top defendants and plaintiffs

The summary statistics below shows the list of top 20 defendants and top 20 plaintiffs.

data <- 
  data %>% 
  select(DEF, PLT, nature_of_suit, cause) 

str(data)
## 'data.frame':    4200 obs. of  4 variables:
##  $ DEF           : Factor w/ 3369 levels "-8",", ET AL",..: 1024 1637 993 2405 3274 649 2845 76 118 119 ...
##  $ PLT           : Factor w/ 3128 levels "-8","108 DEGREES. LLC",..: 2968 1362 2944 2944 1546 268 85 1813 2166 1767 ...
##  $ nature_of_suit: Factor w/ 44 levels "ADMINISTRATIVE PROCEDURE ACT/REVIEW OR APPEAL OF AGENCY DECISION",..: 43 29 29 29 29 28 19 36 36 36 ...
##  $ cause         : Factor w/ 173 levels "","0.415277778",..: NA NA NA NA NA NA NA NA NA NA ...
summary(data, maxsum = 20)
##                              DEF      
##  -8                            :  61  
##  TYCO INTERNATIONAL, ET AL     :  34  
##  USA                           :  34  
##  GUTIERREZ, ET AL              :  12  
##  NH DEPARTMENT OF HEALTH AND HU:  12  
##  SEALED                        :  11  
##  WAL-MART STORES, INC.         :  11  
##  PORTFOLIO RECOVERY ASSOCIATES,:  10  
##  STATE OF NEW HAMPSHIRE        :  10  
##  COLGATE-PALMOLIVE COMPANY     :   9  
##  USA, ET AL                    :   9  
##  US POSTAL SERVICE, POSTMASTER :   8  
##  DEPUY ORTHOPAEDICS, INC, ET AL:   7  
##  MIDLAND CREDIT MANAGEME, ET AL:   7  
##  TYCO INTERNATIONAL, LTD.      :   7  
##  US ATTORNEY GENERAL           :   7  
##  BANK OF AMERICA, N.A.         :   6  
##  BAYER CORPORATION             :   6  
##  ENTERASYS NETWORKS, ET AL     :   6  
##  (Other)                       :3933  
##                              PLT      
##  USA                           :  82  
##  -8                            :  20  
##  DIRECTV, INC.                 :  20  
##  AMATUCCI                      :  17  
##  WILSON                        :  15  
##  JOHNSON                       :  13  
##  PFIP, LLC                     :  12  
##  SEALED                        :  11  
##  COLEMAN                       :  10  
##  DAVIS                         :  10  
##  THEODORE, ET AL               :  10  
##  US DEPARTMENT OF LABOR, SECRET:  10  
##  BROWN                         :   9  
##  FISCHER                       :   9  
##  T.R. WORLD GYM-IP, LLC        :   9  
##  VELCRO INDUSTRIES B.V.        :   9  
##  BERSAW                        :   8  
##  HOLDER                        :   8  
##  LEWIS                         :   8  
##  (Other)                       :3910  
##                             nature_of_suit
##  OTHER CONTRACT ACTIONS            :610   
##  OTHER CIVIL RIGHTS                :574   
##  CIVIL RIGHTS JOBS                 :437   
##  OTHER PERSONAL INJURY             :356   
##  OTHER STATUTORY ACTIONS           :344   
##  INSURANCE                         :245   
##  PERSONAL INJURY -PRODUCT LIABILITY:181   
##  TRADEMARK                         :143   
##  CONSUMER CREDIT                   :137   
##  MOTOR VEHICLE PERSONAL INJURY     :136   
##  COPYRIGHT                         :116   
##  SECURITIES, COMMODITIES, EXCHANGE :111   
##  CIVIL RIGHTS ADA EMPLOYMENT       : 93   
##  OTHER FRAUD                       : 73   
##  OTHER REAL PROPERTY ACTIONS       : 72   
##  MEDICAL MALPRACTICE               : 70   
##  FAIR LABOR STANDARDS ACT          : 64   
##  CIVIL RIGHTS ADA OTHER            : 54   
##  OTHER PERSONAL PROPERTY DAMAGE    : 54   
##  (Other)                           :330   
##                                                 cause     
##  42:1983 Civil Rights Act                          : 183  
##  28:1332 Diversity-Personal Injury                 :  79  
##  28:1332 Diversity-Breach of Contract              :  78  
##  28:1441  Petition for Removal - Employment Discrim:  70  
##  28:1331 Federal Question: Other Civil Rights      :  68  
##  28:1441 Petition for Removal- Civil Rights Act    :  60  
##  28:1332 Diversity-Other Contract                  :  54  
##  15:1692 Fair Debt Collection Act                  :  51  
##  28:1441 Petition for Removal- Insurance Contract  :  44  
##  15:78m(a) Securities Exchange Act                 :  41  
##  28:1441 Petition For Removal--Other Contract      :  41  
##  42:12101 Americans With Disabilities Act          :  38  
##  28:1441 Petition for Removal- Breach of Contract  :  30  
##  28:1332 Diversity-Fraud                           :  29  
##  28:1441 Petition for Removal- Personal Injury     :  28  
##  28:1332 Diversity-Product Liability               :  26  
##  42:2000e  Job Discrimination (Employment)         :  26  
##  28:1331 Fed. Question: Personal Injury            :  25  
##  (Other)                                           : 757  
##  NA's                                              :2472

What is VELCRO INDUSTRIES suing for?

data %>%
  filter(str_detect(PLT, "VELCRO INDUSTRIES")) %>%
  group_by(nature_of_suit) %>%
  summarise(n = n())
## # A tibble: 2 x 2
##   nature_of_suit     n
##   <fctr>         <int>
## 1 COPYRIGHT          1
## 2 TRADEMARK         12

data %>%
  filter(str_detect(PLT, "VELCRO INDUSTRIES")) %>%
  group_by(cause) %>%
  summarise(n = n())
## # A tibble: 2 x 2
##   cause                              n
##   <fctr>                         <int>
## 1 28:1338 Trademark Infringement     2
## 2 <NA>                              11

What is Tyco sued for?

data %>%
  filter(str_detect(DEF, "TYCO INTERNATIONAL")) %>%
  group_by(nature_of_suit) %>%
  summarise(n = n())
## # A tibble: 1 x 2
##   nature_of_suit                        n
##   <fctr>                            <int>
## 1 SECURITIES, COMMODITIES, EXCHANGE    47

data %>%
  filter(str_detect(DEF, "TYCO INTERNATIONAL")) %>%
  group_by(cause) %>%
  summarise(n = n())
## # A tibble: 4 x 2
##   cause                                           n
##   <fctr>                                      <int>
## 1 15:78m(a) Securities Exchange Act              18
## 2 28:1331 Fed. Question: Fair Labor Standards     1
## 3 No cause code entered                           1
## 4 <NA>                                           27