g=rnorm(100,0,1)
g
## [1] -2.06734761 -1.61421945 -0.09297648 2.55877394 0.91899028
## [6] 2.79611982 -0.30680528 -0.73710006 -0.85098799 -0.73043284
## [11] -0.91692899 0.95589790 0.30619868 0.24217046 -1.03826931
## [16] -1.63629192 -0.47266717 2.05937776 0.11076363 -0.40323386
## [21] 1.24221998 -0.07300865 1.65293848 -0.79071596 -0.12130190
## [26] -0.15358563 -0.44218211 0.75897113 -0.15685554 -1.90465687
## [31] 0.40203483 -0.77963515 -1.66504643 0.88393897 0.49980154
## [36] -0.51533100 0.59238967 -1.20985264 -1.78045702 0.51395025
## [41] 0.04388270 0.09534893 0.32711611 0.30943209 -0.97514884
## [46] 0.82637780 -0.22925968 0.20881258 -1.12748994 -1.56113371
## [51] 1.03199439 -1.82769270 0.50417465 0.58884567 0.30206624
## [56] -1.65329137 0.92478286 0.32603695 -0.12198221 1.62864138
## [61] -0.01384649 -0.76547226 -0.59017354 0.65520705 0.71320414
## [66] 2.45776984 0.14235336 -1.03902196 0.10248758 -0.24456097
## [71] -1.13365450 -0.97453036 0.16486515 1.24923944 0.01058647
## [76] 0.60940327 0.64429970 0.66104608 0.90571775 -0.57229677
## [81] 0.39362015 0.23136218 -1.41753569 0.85508186 2.38295268
## [86] 0.49034757 0.86354855 -0.18038512 -1.66926782 -0.14693246
## [91] 1.44225701 -0.32393846 -0.40785725 0.39525292 0.27788995
## [96] -1.33092188 -1.28876775 1.43763385 -1.17091345 -0.87253344
ts.plot(g,main=" Grafica de secuancia de proceso ruido blanco")
## usando una matriz de 1x2
par(mfrow=c(1,2))
acf(g,main=" Grafica de autocorrelacion simple",ylim=c(-1,1))
pacf(g,main=" Grafica de autocorralcion parcial",ylim=c(-1,1))
## Generando un camino aleatorio
w=rnorm(100,0,1)
x<-w
for(t in 2:100) x[t]<-x[t-1]+w[t]
## haciendo la grafica del camino aleatorio
ts.plot(x,main=" Generacion de camino aleatorio Xt")
acf(x,main=" Grafica de autocorrelacion simple",ylim=c(-1,1))
pacf(x,main=" Grafica de autocorralcion parcial",ylim=c(-1,1))
layout(matrix(c(1,1,2,3) ,2,2,byrow=TRUE))
AR<-arima.sim(list(order=c(1,0,0),ar=+.8),n=100)
plot(AR,main=(expression(AR(1)~~~~phi==0.8)))
acf(AR,main="autocorelacion simple de orden 1")
pacf(AR,main="autocorrealacion parcial")
layout(matrix(c(1,1,2,3) ,2,2,byrow=TRUE))
AR1<-arima.sim(list(order=c(1,0,0),ar=-.8),n=100)
plot(AR1,main=(expression(AR(1)~~~~phi==-0.8)))
acf(AR1,main="autocorelacion simple de orden 1")
pacf(AR1,main="autocorrealacion parcial")
layout(matrix(c(1,1,2,3) ,2,2,byrow=TRUE))
MA<-arima.sim(list(order=c(0,0,1),ma=.3),n=100)
plot(MA,main=(expression(MA(1)~~~~theta==-0.8)))
acf(MA,main="autocorelacion simple de orden 1")
pacf(MA,main="autocorrealacion parcial")
``` ### Generando un MA(2)
layout(matrix(c(1,1,2,3) ,2,2,byrow=TRUE))
MA2<-arima.sim(list(order=c(0,0,2),ma=c(.3,.2)),n=100)
plot(MA2,main=(expression(MA(2)~~~~theta==c(.3,.2))))
acf(MA2,main="autocorelacion simple de orden 2 ")
pacf(MA2,main="autocorrealacion parcial")