\[ P_{A}= (4-x)(1-x)^{2}=0\]
\[ -x+4=0=(\lambda=4)\] \[(1-x=0)=(\lambda=1)\]
\[ \lambda I_{n}-A\]
\[\lambda I_{n} -A | \lambda=4 \]
\[\begin{equation*} \mathbf{}\left[\begin{matrix} \lambda -2 & -1 & -1\\ -1 & \lambda -2 & -1\\ -1 & -1 & \lambda -2 \end{matrix}\right]==\left[\begin{matrix} \ 2&-1&-1\\ -1 &2& -1\\-1&-1&2 \end{matrix}\right] \end{equation*}\]
\[ Get RREF\]
library(pracma)
AA <- matrix(c(2,-1,-1,-1,2,-1,-1,-1,2),ncol=3)
rref(AA)## [,1] [,2] [,3]
## [1,] 1 0 -1
## [2,] 0 1 -1
## [3,] 0 0 0
\[ x-z=0\]
\[y-z=0\] \[x=y=z \]
\[ x \begin{bmatrix} 1 \\ 1 \\ 1\\ \end{bmatrix} \]
\[\lambda I_{n} -A | \lambda=1 \]
\[\begin{equation*} \mathbf{}\left[\begin{matrix} \lambda -2 & -1 & -1\\ -1 & \lambda -2 & -1\\ -1 & -1 & \lambda -2 \end{matrix}\right]==\left[\begin{matrix} \ -1&-1&-1\\ -1 &-1& -1\\-1&-1&-1 \end{matrix}\right] \end{equation*}\]
\[ Get RREF\]
library(pracma)
A <- matrix(c(-1,-1,-1,-1,-1,-1,-1,-1,-1),ncol=3)
rref(A)## [,1] [,2] [,3]
## [1,] 1 1 1
## [2,] 0 0 0
## [3,] 0 0 0
\[ x+y+z=0\]
\[ Given x=1\] \[ y=-z-1 |z=-y-1 \]
\[y=(-y-1)-1 = 2y=-2= (y=-1,z=0,x=1) \] \[z=(-z-1)-1 = 2z=-2= (z=-1,y=0,x=1) \] \[ \begin{bmatrix} 1 \\ 0 \\ -1\\ \end{bmatrix}|\begin{bmatrix} 1 \\ -1 \\ 0\\ \end{bmatrix}\]