Q1
## [1] 4
The maximum rank of a matrix where m > n cannot be larger than the min(m, n). The minimum rank of any matrix outside of a zero matrix is 1.
## [1] 1
Q2
## [1] 6 4 1
## [,1] [,2] [,3]
## [1,] 0.5108407 0.5547002 1
## [2,] 0.7981886 0.8320503 0
## [3,] 0.3192754 0.0000000 0
The characteristic polynomial is: \(p_{A}(\lambda) = (1 - \lambda)(4 - \lambda)(6 - \lambda)\)
The eigenspace when \(\lambda = 1\) is:
## [,1] [,2] [,3]
## [1,] 0 1 0
## [2,] 0 0 1
## [3,] 0 0 0
\[ \left[\begin{array} {rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right] \left[\begin{array} {rrr} v_{1} \\ v_{2} \\ v_{3} \end{array}\right] = \left[\begin{array} {rrr} 0 \\ 0 \\ 0 \end{array}\right] \]
Therefore
\[ E_{\lambda=1} = \left[\begin{array} {rrr} 1 \\ 0 \\ 0 \end{array}\right] \]
The eigenspace when \(\lambda = 4\) is:
## [,1] [,2] [,3]
## [1,] 1 -0.6666667 0
## [2,] 0 0.0000000 1
## [3,] 0 0.0000000 0
\[ \left[\begin{array} {rrr} 1 & -\frac{2}{3} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right] \left[\begin{array} {rrr} v_{1} \\ v_{2} \\ v_{3} \end{array}\right] = \left[\begin{array} {rrr} 0 \\ 0 \\ 0 \end{array}\right] \]
Therefore
\[ E_{\lambda=4} = \left[\begin{array} {rrr} 1 \\ 1.5 \\ 0 \end{array}\right] \]
The eigenspace when \(\lambda = 6\) is:
## [,1] [,2] [,3]
## [1,] 1 0 -1.6
## [2,] 0 1 -2.5
## [3,] 0 0 0.0
\[ \left[\begin{array} {rrr} 1 & 0 & -1.6 \\ 0 & 1 & -2.5 \\ 0 & 0 & 0 \end{array}\right] \left[\begin{array} {rrr} v_{1} \\ v_{2} \\ v_{3} \end{array}\right] = \left[\begin{array} {rrr} 0 \\ 0 \\ 0 \end{array}\right] \]
Therefore
\[ E_{\lambda=6} = \left[\begin{array} {rrr} 1.6 \\ 2.5 \\ 1 \end{array}\right] \]