drugData<-read.csv("VAS DATA.csv")

drugData
##    Group VAS_before VAS_after
## 1      A         86        71
## 2      A         77        59
## 3      A         75        44
## 4      A         83        49
## 5      A         72        32
## 6      A         70        42
## 7      A         77        38
## 8      A         76        36
## 9      A         85        33
## 10     A         79        29
## 11     A         71        37
## 12     A         76        62
## 13     A         68        29
## 14     A         69        41
## 15     A         80        38
## 16     A         72        40
## 17     B         84        82
## 18     B         74        73
## 19     B         75        77
## 20     B         79        81
## 21     B         77        76
## 22     B         80        74
## 23     B         82        80
## 24     B         61        60
## 25     B         85        86
## 26     B         68        61
## 27     B         69        67
## 28     B         72        70
## 29     B         70        72
## 30     B         73        69
## 31     B         74        73
## 32     B         66        62
drugDataA<-subset(drugData,drugData$Group=="A")
drugDataA
##    Group VAS_before VAS_after
## 1      A         86        71
## 2      A         77        59
## 3      A         75        44
## 4      A         83        49
## 5      A         72        32
## 6      A         70        42
## 7      A         77        38
## 8      A         76        36
## 9      A         85        33
## 10     A         79        29
## 11     A         71        37
## 12     A         76        62
## 13     A         68        29
## 14     A         69        41
## 15     A         80        38
## 16     A         72        40
drugDataB<-subset(drugData,drugData$Group=="B")
drugDataB
##    Group VAS_before VAS_after
## 17     B         84        82
## 18     B         74        73
## 19     B         75        77
## 20     B         79        81
## 21     B         77        76
## 22     B         80        74
## 23     B         82        80
## 24     B         61        60
## 25     B         85        86
## 26     B         68        61
## 27     B         69        67
## 28     B         72        70
## 29     B         70        72
## 30     B         73        69
## 31     B         74        73
## 32     B         66        62
#Ho:VAS before test= VAS after test
#H1: VAS after test<VAS score before test
#Use one sample paired test (1 sample 2 conditions)

#Since it is a single sample with pre and post scenarios on ample samples.
#We go for Pairwise t test

t.test(drugDataA$VAS_before,drugDataA$VAS_after,alternative = "greater",paired = T)
## 
##  Paired t-test
## 
## data:  drugDataA$VAS_before and drugDataA$VAS_after
## t = 12.021, df = 15, p-value = 2.111e-09
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
##  28.61447      Inf
## sample estimates:
## mean of the differences 
##                    33.5
#P-value<0.05 (LOS) .Hence we reject Null Hypothesis.
#Ho:VAS before test= VAS after test
#H1: VAS after test<VAS score before test
#Use one sample paired test (1 sample 2 conditions)

#Since it is a single sample with pre and post scenarios on ample samples.
#We go for Pairwise t test

t.test(drugDataB$VAS_before,drugDataB$VAS_after,alternative = "greater",paired = T)
## 
##  Paired t-test
## 
## data:  drugDataB$VAS_before and drugDataB$VAS_after
## t = 2.4252, df = 15, p-value = 0.01419
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
##  0.4503799       Inf
## sample estimates:
## mean of the differences 
##                   1.625
#P-Value is less than 0.05 (LOS) Hence we reject Null hypothesis
#Ho:VAS after test (A)= VAS after test (B)
#H1: VAS after test (B)<VAS score after test (A)
#Use one sample paired test (1 sample 2 conditions)

#Since we have to compare 2 samples and there is single factor with only 2 levels,
#we apply t test for 2 independent samples

t.test(VAS_after~Group,data=drugData,alternative="greater",var.equal=T)
## 
##  Two Sample t-test
## 
## data:  VAS_after by Group
## t = -8.4275, df = 30, p-value = 1
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
##  -36.26715       Inf
## sample estimates:
## mean in group A mean in group B 
##         42.5000         72.6875
#P-value is >0.0 (LOS) Hence we accpet Null hypothesis
library(ggplot2)
ggplot(data=drugData,aes(x=Group,y=VAS_after))+
  geom_boxplot()