Note: This work is at an early stage; conference presentations for NARST and ASTE are currently under review. We welcome your feedback on any and all parts of this work.

Table of contents:

Background of the study

Context of the study

Method

Loading, setting up

Conversing (mentioning and replying) data

#> # A tibble: 238,144 x 10
#>    sender receiver weight sender_profile receiver_profile sender_n_tweets
#>    <chr>  <chr>     <dbl> <fct>          <fct>                      <int>
#>  1 21sts… bravese…      1 Administration Teacher                        6
#>  2 21sts… brunsell      3 Administration Other                          6
#>  3 21sts… cduke62       0 Administration Unclear                        6
#>  4 21sts… fredende      6 Administration Administration                 6
#>  5 21sts… jasperf…      1 Administration Other                          6
#>  6 21sts… jenarns…      1 Administration Administration                 6
#>  7 21sts… krscien…      0 Administration Administration                 6
#>  8 21sts… lpugh3        0 Administration Administration                 6
#>  9 21sts… reiserb…      1 Administration Policy/Research                6
#> 10 21sts… tdishel…      0 Administration Teacher                        6
#> # ... with 238,134 more rows, and 4 more variables:
#> #   receiver_n_tweets <int>, sum_var <chr>, tie <dbl>, weight_l <dbl>

Endorsing (retweeting and favoriting/liking)

#> # A tibble: 247,009 x 9
#>    sender receiver weight sender_profile receiver_profile sender_n_tweets
#>    <chr>  <chr>     <dbl> <fct>          <fct>                      <int>
#>  1 21sts… amykfmu…      0 Administration Teacher                        6
#>  2 21sts… dtcampbe      0 Administration Policy/Research                6
#>  3 21sts… fredende      0 Administration Administration                 6
#>  4 21sts… karalu79      0 Administration Teacher                        6
#>  5 21sts… kastidh…      0 Administration Teacher                        6
#>  6 21sts… reiserb…      0 Administration Policy/Research                6
#>  7 21sts… starrsc…      0 Administration Administration                 6
#>  8 21sts… tdishel…      0 Administration Teacher                        6
#>  9 21sts… 8blah8b…      0 Administration Teacher                        6
#> 10 21sts… alliebb…      0 Administration Administration                 6
#> # ... with 246,999 more rows, and 3 more variables:
#> #   receiver_n_tweets <int>, sum_var <chr>, tie <dbl>

0. Null P2 models predicting tie

0A. Conversing

There appear to be moderate-large sender and receiver effects (in terms of random effects):

#> 
#> Generalized linear mixed model
#>  Family: binomial (logit)
#> Formula: tie ~ 1 + (1 | sender) + (1 | receiver)
#> 
#>     ICC (sender): 0.255228
#>   ICC (receiver): 0.386557

0B. Endorsing

There appear to be small sender and receiver effects for endorsing, too (in terms of random effects):

#> 
#> Generalized linear mixed model
#>  Family: binomial (logit)
#> Formula: tie ~ 1 + (1 | sender) + (1 | receiver)
#> 
#>     ICC (sender): 0.333777
#>   ICC (receiver): 0.290476

1. Initially built P2 models predicting tie

Sender and receive random effects; sender and receiver n-tweets; sender and receive profile

1A. Conversing

m1c <-  glmer(tie ~ 1 +
                I(sender_n_tweets/10) + I(receiver_n_tweets/10) +
                sender_profile*receiver_profile +
                (1|sender) + (1|receiver), 
              family = "binomial",
              control=glmerControl(optimizer="bobyqa",optCtrl=list(maxfun=2e5)), 
              data = tmc)
saveRDS(m1c, "model-output/m1c.rds")

1B. Endorsing

m1e <-  glmer(tie ~ 1 +
                I(sender_n_tweets/10) + I(receiver_n_tweets/10) +
                sender_profile*receiver_profile +
                (1|sender) + (1|receiver), 
              family = "binomial",
              control=glmerControl(optimizer="bobyqa",optCtrl=list(maxfun=2e5)), 
              data = tme)

saveRDS(m1e, "model-output/m1e.rds")

2. ERGMs with full dataset

2A. Conversing

#> 
#> ==========================
#> Summary of model fit
#> ==========================
#> 
#> Formula:   gg ~ edges + mutual + nodecov("n_tweets") + nodemix("profile_code", 
#>     base = 25)
#> 
#> Iterations:  7 out of 30 
#> 
#> Monte Carlo MLE Results:
#>                                                   Estimate Std. Error
#> edges                                            -5.180056   0.233595
#> mutual                                            3.985294   0.056652
#> nodecov.n_tweets                                  0.316842   0.004578
#> mix.profile_code.Administration.Administration    0.881836   0.239400
#> mix.profile_code.Other.Administration             0.927815   0.256076
#> mix.profile_code.Policy/Research.Administration   1.083574   0.249292
#> mix.profile_code.Teacher.Administration           0.746865   0.241910
#> mix.profile_code.Unclear.Administration           0.735041   0.264143
#> mix.profile_code.Administration.Other             0.489695   0.263146
#> mix.profile_code.Other.Other                      0.439478   0.278216
#> mix.profile_code.Policy/Research.Other            1.028006   0.259063
#> mix.profile_code.Teacher.Other                    0.412104   0.247085
#> mix.profile_code.Unclear.Other                    0.138546   0.319491
#> mix.profile_code.Administration.Policy/Research   0.415201   0.263286
#> mix.profile_code.Other.Policy/Research            0.362689   0.263793
#> mix.profile_code.Policy/Research.Policy/Research  0.749510   0.251597
#> mix.profile_code.Teacher.Policy/Research          0.216281   0.247161
#> mix.profile_code.Unclear.Policy/Research          0.379460   0.286361
#> mix.profile_code.Administration.Teacher           0.635578   0.240539
#> mix.profile_code.Other.Teacher                    0.686185   0.242986
#> mix.profile_code.Policy/Research.Teacher          0.731733   0.244379
#> mix.profile_code.Teacher.Teacher                  0.623727   0.232525
#> mix.profile_code.Unclear.Teacher                  0.591886   0.247053
#> mix.profile_code.Administration.Unclear          -0.504453   0.313841
#> mix.profile_code.Other.Unclear                    0.117043   0.315637
#> mix.profile_code.Policy/Research.Unclear          0.063245   0.297451
#> mix.profile_code.Teacher.Unclear                  0.080134   0.258251
#>                                                  MCMC % z value Pr(>|z|)
#> edges                                                 0 -22.175  < 1e-04
#> mutual                                                0  70.347  < 1e-04
#> nodecov.n_tweets                                      1  69.204  < 1e-04
#> mix.profile_code.Administration.Administration        0   3.684 0.000230
#> mix.profile_code.Other.Administration                 0   3.623 0.000291
#> mix.profile_code.Policy/Research.Administration       0   4.347  < 1e-04
#> mix.profile_code.Teacher.Administration               0   3.087 0.002019
#> mix.profile_code.Unclear.Administration               0   2.783 0.005390
#> mix.profile_code.Administration.Other                 0   1.861 0.062755
#> mix.profile_code.Other.Other                          0   1.580 0.114193
#> mix.profile_code.Policy/Research.Other                0   3.968  < 1e-04
#> mix.profile_code.Teacher.Other                        0   1.668 0.095343
#> mix.profile_code.Unclear.Other                        0   0.434 0.664545
#> mix.profile_code.Administration.Policy/Research       0   1.577 0.114797
#> mix.profile_code.Other.Policy/Research                0   1.375 0.169163
#> mix.profile_code.Policy/Research.Policy/Research      0   2.979 0.002892
#> mix.profile_code.Teacher.Policy/Research              0   0.875 0.381541
#> mix.profile_code.Unclear.Policy/Research              0   1.325 0.185134
#> mix.profile_code.Administration.Teacher               0   2.642 0.008234
#> mix.profile_code.Other.Teacher                        0   2.824 0.004743
#> mix.profile_code.Policy/Research.Teacher              0   2.994 0.002751
#> mix.profile_code.Teacher.Teacher                      0   2.682 0.007309
#> mix.profile_code.Unclear.Teacher                      0   2.396 0.016585
#> mix.profile_code.Administration.Unclear               0  -1.607 0.107977
#> mix.profile_code.Other.Unclear                        0   0.371 0.710776
#> mix.profile_code.Policy/Research.Unclear              0   0.213 0.831621
#> mix.profile_code.Teacher.Unclear                      0   0.310 0.756336
#>                                                     
#> edges                                            ***
#> mutual                                           ***
#> nodecov.n_tweets                                 ***
#> mix.profile_code.Administration.Administration   ***
#> mix.profile_code.Other.Administration            ***
#> mix.profile_code.Policy/Research.Administration  ***
#> mix.profile_code.Teacher.Administration          ** 
#> mix.profile_code.Unclear.Administration          ** 
#> mix.profile_code.Administration.Other            .  
#> mix.profile_code.Other.Other                        
#> mix.profile_code.Policy/Research.Other           ***
#> mix.profile_code.Teacher.Other                   .  
#> mix.profile_code.Unclear.Other                      
#> mix.profile_code.Administration.Policy/Research     
#> mix.profile_code.Other.Policy/Research              
#> mix.profile_code.Policy/Research.Policy/Research ** 
#> mix.profile_code.Teacher.Policy/Research            
#> mix.profile_code.Unclear.Policy/Research            
#> mix.profile_code.Administration.Teacher          ** 
#> mix.profile_code.Other.Teacher                   ** 
#> mix.profile_code.Policy/Research.Teacher         ** 
#> mix.profile_code.Teacher.Teacher                 ** 
#> mix.profile_code.Unclear.Teacher                 *  
#> mix.profile_code.Administration.Unclear             
#> mix.profile_code.Other.Unclear                      
#> mix.profile_code.Policy/Research.Unclear            
#> mix.profile_code.Teacher.Unclear                    
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#>      Null Deviance: 329461  on 237656  degrees of freedom
#>  Residual Deviance:  35741  on 237629  degrees of freedom
#>  
#> AIC: 35795    BIC: 36075    (Smaller is better.)

2B. Endorsing

#> 
#> ==========================
#> Summary of model fit
#> ==========================
#> 
#> Formula:   gg ~ edges + mutual + nodecov("n_tweets") + nodemix("profile_code", 
#>     base = 25)
#> 
#> Iterations:  5 out of 30 
#> 
#> Monte Carlo MLE Results:
#>                                                   Estimate Std. Error
#> edges                                            -4.304840   0.155870
#> mutual                                            2.755104   0.041665
#> nodecov.n_tweets                                  0.298806   0.005544
#> mix.profile_code.Administration.Administration    0.800308   0.167877
#> mix.profile_code.Other.Administration             0.658639   0.169519
#> mix.profile_code.Policy/Research.Administration   0.695980   0.171350
#> mix.profile_code.Teacher.Administration           0.758270   0.161688
#> mix.profile_code.Unclear.Administration           0.342926   0.186515
#> mix.profile_code.Administration.Other             0.755279   0.171655
#> mix.profile_code.Other.Other                      0.456908   0.181746
#> mix.profile_code.Policy/Research.Other            0.739460   0.179328
#> mix.profile_code.Teacher.Other                    0.668976   0.163771
#> mix.profile_code.Unclear.Other                    0.277946   0.203963
#> mix.profile_code.Administration.Policy/Research   0.797051   0.167642
#> mix.profile_code.Other.Policy/Research            0.659795   0.171534
#> mix.profile_code.Policy/Research.Policy/Research  0.735273   0.168435
#> mix.profile_code.Teacher.Policy/Research          0.762931   0.163539
#> mix.profile_code.Unclear.Policy/Research          0.466388   0.190655
#> mix.profile_code.Administration.Teacher           0.611808   0.162195
#> mix.profile_code.Other.Teacher                    0.571671   0.161260
#> mix.profile_code.Policy/Research.Teacher          0.337815   0.162239
#> mix.profile_code.Teacher.Teacher                  0.652635   0.157122
#> mix.profile_code.Unclear.Teacher                  0.413473   0.166239
#> mix.profile_code.Administration.Unclear           0.109275   0.194849
#> mix.profile_code.Other.Unclear                    0.312056   0.198019
#> mix.profile_code.Policy/Research.Unclear          0.102418   0.197712
#> mix.profile_code.Teacher.Unclear                  0.269391   0.172532
#>                                                  MCMC % z value Pr(>|z|)
#> edges                                                 0 -27.618  < 1e-04
#> mutual                                                0  66.125  < 1e-04
#> nodecov.n_tweets                                      0  53.894  < 1e-04
#> mix.profile_code.Administration.Administration        0   4.767  < 1e-04
#> mix.profile_code.Other.Administration                 0   3.885 0.000102
#> mix.profile_code.Policy/Research.Administration       0   4.062  < 1e-04
#> mix.profile_code.Teacher.Administration               0   4.690  < 1e-04
#> mix.profile_code.Unclear.Administration               0   1.839 0.065975
#> mix.profile_code.Administration.Other                 0   4.400  < 1e-04
#> mix.profile_code.Other.Other                          0   2.514 0.011937
#> mix.profile_code.Policy/Research.Other                0   4.124  < 1e-04
#> mix.profile_code.Teacher.Other                        0   4.085  < 1e-04
#> mix.profile_code.Unclear.Other                        0   1.363 0.172970
#> mix.profile_code.Administration.Policy/Research       0   4.754  < 1e-04
#> mix.profile_code.Other.Policy/Research                0   3.846 0.000120
#> mix.profile_code.Policy/Research.Policy/Research      0   4.365  < 1e-04
#> mix.profile_code.Teacher.Policy/Research              0   4.665  < 1e-04
#> mix.profile_code.Unclear.Policy/Research              0   2.446 0.014435
#> mix.profile_code.Administration.Teacher               0   3.772 0.000162
#> mix.profile_code.Other.Teacher                        0   3.545 0.000393
#> mix.profile_code.Policy/Research.Teacher              0   2.082 0.037324
#> mix.profile_code.Teacher.Teacher                      0   4.154  < 1e-04
#> mix.profile_code.Unclear.Teacher                      0   2.487 0.012874
#> mix.profile_code.Administration.Unclear               0   0.561 0.574921
#> mix.profile_code.Other.Unclear                        0   1.576 0.115051
#> mix.profile_code.Policy/Research.Unclear              0   0.518 0.604446
#> mix.profile_code.Teacher.Unclear                      0   1.561 0.118430
#>                                                     
#> edges                                            ***
#> mutual                                           ***
#> nodecov.n_tweets                                 ***
#> mix.profile_code.Administration.Administration   ***
#> mix.profile_code.Other.Administration            ***
#> mix.profile_code.Policy/Research.Administration  ***
#> mix.profile_code.Teacher.Administration          ***
#> mix.profile_code.Unclear.Administration          .  
#> mix.profile_code.Administration.Other            ***
#> mix.profile_code.Other.Other                     *  
#> mix.profile_code.Policy/Research.Other           ***
#> mix.profile_code.Teacher.Other                   ***
#> mix.profile_code.Unclear.Other                      
#> mix.profile_code.Administration.Policy/Research  ***
#> mix.profile_code.Other.Policy/Research           ***
#> mix.profile_code.Policy/Research.Policy/Research ***
#> mix.profile_code.Teacher.Policy/Research         ***
#> mix.profile_code.Unclear.Policy/Research         *  
#> mix.profile_code.Administration.Teacher          ***
#> mix.profile_code.Other.Teacher                   ***
#> mix.profile_code.Policy/Research.Teacher         *  
#> mix.profile_code.Teacher.Teacher                 ***
#> mix.profile_code.Unclear.Teacher                 *  
#> mix.profile_code.Administration.Unclear             
#> mix.profile_code.Other.Unclear                      
#> mix.profile_code.Policy/Research.Unclear            
#> mix.profile_code.Teacher.Unclear                    
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#>      Null Deviance: 341738  on 246512  degrees of freedom
#>  Residual Deviance:  67824  on 246485  degrees of freedom
#>  
#> AIC: 67878    BIC: 68159    (Smaller is better.)
#> Joining, by = "term"