Compute the eigenvalues of the matrix by hand \[ \begin{bmatrix} 2 &-1\\ 1 &1 \end{bmatrix} \]
To find the eigenvalues, we want to compute \(\lambda\) where \(\text{det}(A- \lambda I_2)=0\).
\[
\text{det}(A-\lambda I_2)=\begin{vmatrix} 2-\lambda & -2\\ 1 & 1-\lambda
\end{vmatrix}
\\= (2-\lambda)(1-\lambda)-(-2)(1)
\\= 2- \lambda-2\lambda +\lambda^2 +1
\\= \lambda^2 -3\lambda +3
\] If we plot this, we can see that the roots of \(\lambda^2 -3\lambda +3\) are complex:
curve(x^2 -3*x+3, from = -2, to =5)
Thus, the roots are easiest found via the quadratic formula.
\[ \lambda= \frac{3\pm \sqrt{3^2-4(1)(3)} \ }{2} \\= \frac{3 \pm \sqrt{-3}}{2} \\ \text{so} \\ \lambda=\frac{3+i\sqrt{3}}{2}, \lambda=\frac{3-i\sqrt{3}}{2} \]
Checking my work in R:
A<-matrix(c(2,1,-1,1),nrow=2)
e<-eigen(A)
e$values
## [1] 1.5+0.866025i 1.5-0.866025i