Note: This work is at an early stage; conference presentations for NARST and ASTE are currently under review. We welcome your feedback on any and all parts of this work.
#> # A tibble: 238,144 x 10
#> sender receiver weight sender_profile receiver_profile sender_n_tweets
#> <chr> <chr> <dbl> <fct> <fct> <int>
#> 1 21sts… bravese… 1 Administration Teacher 6
#> 2 21sts… brunsell 3 Administration Other 6
#> 3 21sts… cduke62 0 Administration Unclear 6
#> 4 21sts… fredende 6 Administration Administration 6
#> 5 21sts… jasperf… 1 Administration Other 6
#> 6 21sts… jenarns… 1 Administration Administration 6
#> 7 21sts… krscien… 0 Administration Administration 6
#> 8 21sts… lpugh3 0 Administration Administration 6
#> 9 21sts… reiserb… 1 Administration Policy/Research 6
#> 10 21sts… tdishel… 0 Administration Teacher 6
#> # ... with 238,134 more rows, and 4 more variables:
#> # receiver_n_tweets <int>, sum_var <chr>, tie <dbl>, weight_l <dbl>
#> # A tibble: 247,009 x 9
#> sender receiver weight sender_profile receiver_profile sender_n_tweets
#> <chr> <chr> <dbl> <fct> <fct> <int>
#> 1 21sts… amykfmu… 0 Administration Teacher 6
#> 2 21sts… dtcampbe 0 Administration Policy/Research 6
#> 3 21sts… fredende 0 Administration Administration 6
#> 4 21sts… karalu79 0 Administration Teacher 6
#> 5 21sts… kastidh… 0 Administration Teacher 6
#> 6 21sts… reiserb… 0 Administration Policy/Research 6
#> 7 21sts… starrsc… 0 Administration Administration 6
#> 8 21sts… tdishel… 0 Administration Teacher 6
#> 9 21sts… 8blah8b… 0 Administration Teacher 6
#> 10 21sts… alliebb… 0 Administration Administration 6
#> # ... with 246,999 more rows, and 3 more variables:
#> # receiver_n_tweets <int>, sum_var <chr>, tie <dbl>
There appear to be moderate-large sender and receiver effects (in terms of random effects):
#>
#> Generalized linear mixed model
#> Family: binomial (logit)
#> Formula: tie ~ 1 + (1 | sender) + (1 | receiver)
#>
#> ICC (sender): 0.255228
#> ICC (receiver): 0.386557
There appear to be small sender and receiver effects for endorsing, too (in terms of random effects):
#>
#> Generalized linear mixed model
#> Family: binomial (logit)
#> Formula: tie ~ 1 + (1 | sender) + (1 | receiver)
#>
#> ICC (sender): 0.333777
#> ICC (receiver): 0.290476
Sender and receive random effects; sender and receiver n-tweets; sender and receive profile
m1c <- glmer(tie ~ 1 +
I(sender_n_tweets/10) + I(receiver_n_tweets/10) +
sender_profile*receiver_profile +
(1|sender) + (1|receiver),
family = "binomial",
control=glmerControl(optimizer="bobyqa",optCtrl=list(maxfun=2e5)),
data = tmc)
saveRDS(m1c, "model-output/m1c.rds")
m1e <- glmer(tie ~ 1 +
I(sender_n_tweets/10) + I(receiver_n_tweets/10) +
sender_profile*receiver_profile +
(1|sender) + (1|receiver),
family = "binomial",
control=glmerControl(optimizer="bobyqa",optCtrl=list(maxfun=2e5)),
data = tme)
saveRDS(m1e, "model-output/m1e.rds")
#>
#> ==========================
#> Summary of model fit
#> ==========================
#>
#> Formula: gg ~ edges + mutual + nodecov("n_tweets") + nodemix("profile_code",
#> base = 25)
#>
#> Iterations: 7 out of 30
#>
#> Monte Carlo MLE Results:
#> Estimate Std. Error
#> edges -5.180056 0.233595
#> mutual 3.985294 0.056652
#> nodecov.n_tweets 0.316842 0.004578
#> mix.profile_code.Administration.Administration 0.881836 0.239400
#> mix.profile_code.Other.Administration 0.927815 0.256076
#> mix.profile_code.Policy/Research.Administration 1.083574 0.249292
#> mix.profile_code.Teacher.Administration 0.746865 0.241910
#> mix.profile_code.Unclear.Administration 0.735041 0.264143
#> mix.profile_code.Administration.Other 0.489695 0.263146
#> mix.profile_code.Other.Other 0.439478 0.278216
#> mix.profile_code.Policy/Research.Other 1.028006 0.259063
#> mix.profile_code.Teacher.Other 0.412104 0.247085
#> mix.profile_code.Unclear.Other 0.138546 0.319491
#> mix.profile_code.Administration.Policy/Research 0.415201 0.263286
#> mix.profile_code.Other.Policy/Research 0.362689 0.263793
#> mix.profile_code.Policy/Research.Policy/Research 0.749510 0.251597
#> mix.profile_code.Teacher.Policy/Research 0.216281 0.247161
#> mix.profile_code.Unclear.Policy/Research 0.379460 0.286361
#> mix.profile_code.Administration.Teacher 0.635578 0.240539
#> mix.profile_code.Other.Teacher 0.686185 0.242986
#> mix.profile_code.Policy/Research.Teacher 0.731733 0.244379
#> mix.profile_code.Teacher.Teacher 0.623727 0.232525
#> mix.profile_code.Unclear.Teacher 0.591886 0.247053
#> mix.profile_code.Administration.Unclear -0.504453 0.313841
#> mix.profile_code.Other.Unclear 0.117043 0.315637
#> mix.profile_code.Policy/Research.Unclear 0.063245 0.297451
#> mix.profile_code.Teacher.Unclear 0.080134 0.258251
#> MCMC % z value Pr(>|z|)
#> edges 0 -22.175 < 1e-04
#> mutual 0 70.347 < 1e-04
#> nodecov.n_tweets 1 69.204 < 1e-04
#> mix.profile_code.Administration.Administration 0 3.684 0.000230
#> mix.profile_code.Other.Administration 0 3.623 0.000291
#> mix.profile_code.Policy/Research.Administration 0 4.347 < 1e-04
#> mix.profile_code.Teacher.Administration 0 3.087 0.002019
#> mix.profile_code.Unclear.Administration 0 2.783 0.005390
#> mix.profile_code.Administration.Other 0 1.861 0.062755
#> mix.profile_code.Other.Other 0 1.580 0.114193
#> mix.profile_code.Policy/Research.Other 0 3.968 < 1e-04
#> mix.profile_code.Teacher.Other 0 1.668 0.095343
#> mix.profile_code.Unclear.Other 0 0.434 0.664545
#> mix.profile_code.Administration.Policy/Research 0 1.577 0.114797
#> mix.profile_code.Other.Policy/Research 0 1.375 0.169163
#> mix.profile_code.Policy/Research.Policy/Research 0 2.979 0.002892
#> mix.profile_code.Teacher.Policy/Research 0 0.875 0.381541
#> mix.profile_code.Unclear.Policy/Research 0 1.325 0.185134
#> mix.profile_code.Administration.Teacher 0 2.642 0.008234
#> mix.profile_code.Other.Teacher 0 2.824 0.004743
#> mix.profile_code.Policy/Research.Teacher 0 2.994 0.002751
#> mix.profile_code.Teacher.Teacher 0 2.682 0.007309
#> mix.profile_code.Unclear.Teacher 0 2.396 0.016585
#> mix.profile_code.Administration.Unclear 0 -1.607 0.107977
#> mix.profile_code.Other.Unclear 0 0.371 0.710776
#> mix.profile_code.Policy/Research.Unclear 0 0.213 0.831621
#> mix.profile_code.Teacher.Unclear 0 0.310 0.756336
#>
#> edges ***
#> mutual ***
#> nodecov.n_tweets ***
#> mix.profile_code.Administration.Administration ***
#> mix.profile_code.Other.Administration ***
#> mix.profile_code.Policy/Research.Administration ***
#> mix.profile_code.Teacher.Administration **
#> mix.profile_code.Unclear.Administration **
#> mix.profile_code.Administration.Other .
#> mix.profile_code.Other.Other
#> mix.profile_code.Policy/Research.Other ***
#> mix.profile_code.Teacher.Other .
#> mix.profile_code.Unclear.Other
#> mix.profile_code.Administration.Policy/Research
#> mix.profile_code.Other.Policy/Research
#> mix.profile_code.Policy/Research.Policy/Research **
#> mix.profile_code.Teacher.Policy/Research
#> mix.profile_code.Unclear.Policy/Research
#> mix.profile_code.Administration.Teacher **
#> mix.profile_code.Other.Teacher **
#> mix.profile_code.Policy/Research.Teacher **
#> mix.profile_code.Teacher.Teacher **
#> mix.profile_code.Unclear.Teacher *
#> mix.profile_code.Administration.Unclear
#> mix.profile_code.Other.Unclear
#> mix.profile_code.Policy/Research.Unclear
#> mix.profile_code.Teacher.Unclear
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Null Deviance: 329461 on 237656 degrees of freedom
#> Residual Deviance: 35741 on 237629 degrees of freedom
#>
#> AIC: 35795 BIC: 36075 (Smaller is better.)
#>
#> ==========================
#> Summary of model fit
#> ==========================
#>
#> Formula: gg ~ edges + mutual + nodecov("n_tweets") + nodemix("profile_code",
#> base = 25)
#>
#> Iterations: 5 out of 30
#>
#> Monte Carlo MLE Results:
#> Estimate Std. Error
#> edges -4.304840 0.155870
#> mutual 2.755104 0.041665
#> nodecov.n_tweets 0.298806 0.005544
#> mix.profile_code.Administration.Administration 0.800308 0.167877
#> mix.profile_code.Other.Administration 0.658639 0.169519
#> mix.profile_code.Policy/Research.Administration 0.695980 0.171350
#> mix.profile_code.Teacher.Administration 0.758270 0.161688
#> mix.profile_code.Unclear.Administration 0.342926 0.186515
#> mix.profile_code.Administration.Other 0.755279 0.171655
#> mix.profile_code.Other.Other 0.456908 0.181746
#> mix.profile_code.Policy/Research.Other 0.739460 0.179328
#> mix.profile_code.Teacher.Other 0.668976 0.163771
#> mix.profile_code.Unclear.Other 0.277946 0.203963
#> mix.profile_code.Administration.Policy/Research 0.797051 0.167642
#> mix.profile_code.Other.Policy/Research 0.659795 0.171534
#> mix.profile_code.Policy/Research.Policy/Research 0.735273 0.168435
#> mix.profile_code.Teacher.Policy/Research 0.762931 0.163539
#> mix.profile_code.Unclear.Policy/Research 0.466388 0.190655
#> mix.profile_code.Administration.Teacher 0.611808 0.162195
#> mix.profile_code.Other.Teacher 0.571671 0.161260
#> mix.profile_code.Policy/Research.Teacher 0.337815 0.162239
#> mix.profile_code.Teacher.Teacher 0.652635 0.157122
#> mix.profile_code.Unclear.Teacher 0.413473 0.166239
#> mix.profile_code.Administration.Unclear 0.109275 0.194849
#> mix.profile_code.Other.Unclear 0.312056 0.198019
#> mix.profile_code.Policy/Research.Unclear 0.102418 0.197712
#> mix.profile_code.Teacher.Unclear 0.269391 0.172532
#> MCMC % z value Pr(>|z|)
#> edges 0 -27.618 < 1e-04
#> mutual 0 66.125 < 1e-04
#> nodecov.n_tweets 0 53.894 < 1e-04
#> mix.profile_code.Administration.Administration 0 4.767 < 1e-04
#> mix.profile_code.Other.Administration 0 3.885 0.000102
#> mix.profile_code.Policy/Research.Administration 0 4.062 < 1e-04
#> mix.profile_code.Teacher.Administration 0 4.690 < 1e-04
#> mix.profile_code.Unclear.Administration 0 1.839 0.065975
#> mix.profile_code.Administration.Other 0 4.400 < 1e-04
#> mix.profile_code.Other.Other 0 2.514 0.011937
#> mix.profile_code.Policy/Research.Other 0 4.124 < 1e-04
#> mix.profile_code.Teacher.Other 0 4.085 < 1e-04
#> mix.profile_code.Unclear.Other 0 1.363 0.172970
#> mix.profile_code.Administration.Policy/Research 0 4.754 < 1e-04
#> mix.profile_code.Other.Policy/Research 0 3.846 0.000120
#> mix.profile_code.Policy/Research.Policy/Research 0 4.365 < 1e-04
#> mix.profile_code.Teacher.Policy/Research 0 4.665 < 1e-04
#> mix.profile_code.Unclear.Policy/Research 0 2.446 0.014435
#> mix.profile_code.Administration.Teacher 0 3.772 0.000162
#> mix.profile_code.Other.Teacher 0 3.545 0.000393
#> mix.profile_code.Policy/Research.Teacher 0 2.082 0.037324
#> mix.profile_code.Teacher.Teacher 0 4.154 < 1e-04
#> mix.profile_code.Unclear.Teacher 0 2.487 0.012874
#> mix.profile_code.Administration.Unclear 0 0.561 0.574921
#> mix.profile_code.Other.Unclear 0 1.576 0.115051
#> mix.profile_code.Policy/Research.Unclear 0 0.518 0.604446
#> mix.profile_code.Teacher.Unclear 0 1.561 0.118430
#>
#> edges ***
#> mutual ***
#> nodecov.n_tweets ***
#> mix.profile_code.Administration.Administration ***
#> mix.profile_code.Other.Administration ***
#> mix.profile_code.Policy/Research.Administration ***
#> mix.profile_code.Teacher.Administration ***
#> mix.profile_code.Unclear.Administration .
#> mix.profile_code.Administration.Other ***
#> mix.profile_code.Other.Other *
#> mix.profile_code.Policy/Research.Other ***
#> mix.profile_code.Teacher.Other ***
#> mix.profile_code.Unclear.Other
#> mix.profile_code.Administration.Policy/Research ***
#> mix.profile_code.Other.Policy/Research ***
#> mix.profile_code.Policy/Research.Policy/Research ***
#> mix.profile_code.Teacher.Policy/Research ***
#> mix.profile_code.Unclear.Policy/Research *
#> mix.profile_code.Administration.Teacher ***
#> mix.profile_code.Other.Teacher ***
#> mix.profile_code.Policy/Research.Teacher *
#> mix.profile_code.Teacher.Teacher ***
#> mix.profile_code.Unclear.Teacher *
#> mix.profile_code.Administration.Unclear
#> mix.profile_code.Other.Unclear
#> mix.profile_code.Policy/Research.Unclear
#> mix.profile_code.Teacher.Unclear
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Null Deviance: 341738 on 246512 degrees of freedom
#> Residual Deviance: 67824 on 246485 degrees of freedom
#>
#> AIC: 67878 BIC: 68159 (Smaller is better.)
#> Joining, by = "term"