Note: This work is at an early stage; conference presentations for NARST and ASTE are currently under review. We welcome your feedback on any and all parts of this work.

Table of contents:

Background of the study

Context of the study

Method

Loading, setting up

Conversing (mentioning and replying) data

#> # A tibble: 238,144 x 10
#>    sender    receiver      weight sender_profile receiver_profile sender_n_tweets receiver_n_tweets sum_var      tie weight_l
#>    <chr>     <chr>          <dbl> <fct>          <fct>                      <int>             <int> <chr>      <dbl>    <dbl>
#>  1 21stscied bravesearth        1 Administration Teacher                        6                20 Conversing     1     0   
#>  2 21stscied brunsell           3 Administration Other                          6                90 Conversing     1     1.10
#>  3 21stscied cduke62            0 Administration Unclear                        6                40 Conversing     0     0   
#>  4 21stscied fredende           6 Administration Administration                 6               948 Conversing     1     1.79
#>  5 21stscied jasperfoxsr        1 Administration Other                          6                92 Conversing     1     0   
#>  6 21stscied jenarnswald        1 Administration Administration                 6               103 Conversing     1     0   
#>  7 21stscied krsciencelady      0 Administration Administration                 6               230 Conversing     0     0   
#>  8 21stscied lpugh3             0 Administration Administration                 6                32 Conversing     0     0   
#>  9 21stscied reiserbrianj       1 Administration Policy/Research                6                 4 Conversing     1     0   
#> 10 21stscied tdishelton         0 Administration Teacher                        6               550 Conversing     0     0   
#> # ... with 238,134 more rows

Endorsing (retweeting and favoriting/liking)

#> # A tibble: 247,009 x 9
#>    sender    receiver     weight sender_profile receiver_profile sender_n_tweets receiver_n_tweets sum_var     tie
#>    <chr>     <chr>         <dbl> <fct>          <fct>                      <int>             <int> <chr>     <dbl>
#>  1 21stscied amykfmurphy       0 Administration Teacher                        6               129 Endorsing     0
#>  2 21stscied dtcampbe          0 Administration Policy/Research                6                74 Endorsing     0
#>  3 21stscied fredende          0 Administration Administration                 6               948 Endorsing     0
#>  4 21stscied karalu79          0 Administration Teacher                        6               145 Endorsing     0
#>  5 21stscied kastidham         0 Administration Teacher                        6                31 Endorsing     0
#>  6 21stscied reiserbrianj      0 Administration Policy/Research                6                 4 Endorsing     0
#>  7 21stscied starrscience      0 Administration Administration                 6               136 Endorsing     0
#>  8 21stscied tdishelton        0 Administration Teacher                        6               550 Endorsing     0
#>  9 21stscied 8blah8blah8       0 Administration Teacher                        6                 3 Endorsing     0
#> 10 21stscied alliebbogart      0 Administration Administration                 6                25 Endorsing     0
#> # ... with 246,999 more rows

0. Null P2 models predicting tie

0A. Conversing

There appear to be moderate-large sender and receiver effects (in terms of random effects):

#> 
#> Generalized linear mixed model
#>  Family: binomial (logit)
#> Formula: tie ~ 1 + (1 | sender) + (1 | receiver)
#> 
#>     ICC (sender): 0.255228
#>   ICC (receiver): 0.386557

0B. Endorsing

There appear to be small sender and receiver effects for endorsing, too (in terms of random effects):

#> 
#> Generalized linear mixed model
#>  Family: binomial (logit)
#> Formula: tie ~ 1 + (1 | sender) + (1 | receiver)
#> 
#>     ICC (sender): 0.333777
#>   ICC (receiver): 0.290476

1. Initially built P2 models predicting tie

Sender and receive random effects; sender and receiver n-tweets; sender and receive profile

1A. Conversing

  tie
Predictors Odds Ratios CI p
(Intercept) 0.00 0.00 – 0.01 <0.001
I(sender n tweets/10) 1.15 1.13 – 1.17 <0.001
I(receiver n tweets/10) 1.15 1.13 – 1.17 <0.001
sender_profileAdministration 0.51 0.27 – 0.98 0.044
sender_profileOther 0.65 0.32 – 1.35 0.252
sender_profilePolicy/Resebackground-color:#f2f2f2;h 0.52 0.26 – 1.06 0.071
sender_profileTeacher 0.71 0.39 – 1.29 0.262
receiver_profileAdministration 0.84 0.42 – 1.66 0.613
receiver_profileOther 0.60 0.28 – 1.28 0.186
receiver_profilePolicy/Resebackground-color:#f2f2f2;h 0.74 0.36 – 1.54 0.422
receiver_profileTeacher 0.81 0.43 – 1.53 0.522
sender_profileAdministration:receiver_profileAdministration 2.33 1.31 – 4.12 0.004
sender_profileOther:receiver_profileAdministration 1.80 0.94 – 3.45 0.078
sender_profilePolicy/Resebackground-color:#f2f2f2;h:receiver_profileAdministration 2.44 1.31 – 4.57 0.005
sender_profileTeacher:receiver_profileAdministration 1.48 0.87 – 2.52 0.150
sender_profileAdministration:receiver_profileOther 2.22 1.14 – 4.29 0.018
sender_profileOther:receiver_profileOther 2.31 1.10 – 4.84 0.026
sender_profilePolicy/Resebackground-color:#f2f2f2;h:receiver_profileOther 3.51 1.73 – 7.13 <0.001
sender_profileTeacher:receiver_profileOther 1.62 0.87 – 3.02 0.129
sender_profileAdministration:receiver_profilePolicy/Resebackground-color:#f2f2f2;h 1.98 1.07 – 3.67 0.031
sender_profileOther:receiver_profilePolicy/Resebackground-color:#f2f2f2;h 1.82 0.90 – 3.67 0.094
sender_profilePolicy/Resebackground-color:#f2f2f2;h:receiver_profilePolicy/Resebackground-color:#f2f2f2;h 3.13 1.60 – 6.10 0.001
sender_profileTeacher:receiver_profilePolicy/Resebackground-color:#f2f2f2;h 1.15 0.64 – 2.05 0.646
sender_profileAdministration:receiver_profileTeacher 1.73 1.01 – 2.98 0.046
sender_profileOther:receiver_profileTeacher 1.48 0.79 – 2.75 0.218
sender_profilePolicy/Resebackground-color:#f2f2f2;h:receiver_profileTeacher 1.55 0.85 – 2.81 0.151
sender_profileTeacher:receiver_profileTeacher 1.45 0.87 – 2.41 0.149
Random Effects
σ2 3.29
τ00 sender 1.25
τ00 receiver 1.34
ICC sender 0.21
ICC receiver 0.23
Observations 193457
Marginal R2 / Conditional R2 0.214 / 0.561

1B. Endorsing

#> Some variance components equal zero. Respecify random structure!
  tie
Predictors Odds Ratios CI p
(Intercept) 0.00 0.00 – 0.01 <0.001
I(sender n tweets/10) 1.12 1.10 – 1.15 <0.001
I(receiver n tweets/10) 1.15 1.13 – 1.17 <0.001
Random Effects
σ2 3.29
τ00 receiver 1.34
τ00 sender 1.71
τ00 sender_profile:receiver_profile 0.01
τ00 receiver_profile 0.00
τ00 sender_profile 0.00
ICC receiver 0.21
ICC sender 0.27
ICC sender_profile:receiver_profile 0.00
ICC receiver_profile 0.00
ICC sender_profile 0.00
Observations 218064

2. Same P2 models but ssing just a subset of the data - participants with more than five tweets sent to the hashtag

2A. Conversing

#> Some variance components equal zero. Respecify random structure!
  tie
Predictors Odds Ratios CI p
(Intercept) 0.00 0.00 – 0.01 <0.001
I(sender n tweets/10) 1.13 1.11 – 1.15 <0.001
I(receiver n tweets/10) 1.14 1.12 – 1.16 <0.001
Random Effects
σ2 3.29
τ00 sender 1.12
τ00 receiver 1.27
τ00 sender_profile:receiver_profile 0.03
τ00 receiver_profile 0.00
τ00 sender_profile 0.00
ICC sender 0.20
ICC receiver 0.22
ICC sender_profile:receiver_profile 0.01
ICC receiver_profile 0.00
ICC sender_profile 0.00
Observations 81900

2B. Endorsing

#> Some variance components equal zero. Respecify random structure!
  tie
Predictors Odds Ratios CI p
(Intercept) 0.01 0.01 – 0.02 <0.001
I(sender n tweets/10) 1.10 1.08 – 1.13 <0.001
I(receiver n tweets/10) 1.12 1.10 – 1.14 <0.001
Random Effects
σ2 3.29
τ00 receiver 1.06
τ00 sender 1.72
τ00 sender_profile:receiver_profile 0.01
τ00 receiver_profile 0.00
τ00 sender_profile 0.00
ICC receiver 0.17
ICC sender 0.28
ICC sender_profile:receiver_profile 0.00
ICC receiver_profile 0.00
ICC sender_profile 0.00
Observations 83220

3. ERGMs with full dataset

3A. Conversing

#> 
#> ==========================
#> Summary of model fit
#> ==========================
#> 
#> Formula:   gg ~ edges + mutual + nodecov("n_tweets") + nodemix("profile_code", 
#>     base = 25)
#> 
#> Iterations:  7 out of 30 
#> 
#> Monte Carlo MLE Results:
#>                                                   Estimate Std. Error MCMC % z value Pr(>|z|)    
#> edges                                            -5.180056   0.233595      0 -22.175  < 1e-04 ***
#> mutual                                            3.985294   0.056652      0  70.347  < 1e-04 ***
#> nodecov.n_tweets                                  0.316842   0.004578      1  69.204  < 1e-04 ***
#> mix.profile_code.Administration.Administration    0.881836   0.239400      0   3.684 0.000230 ***
#> mix.profile_code.Other.Administration             0.927815   0.256076      0   3.623 0.000291 ***
#> mix.profile_code.Policy/Research.Administration   1.083574   0.249292      0   4.347  < 1e-04 ***
#> mix.profile_code.Teacher.Administration           0.746865   0.241910      0   3.087 0.002019 ** 
#> mix.profile_code.Unclear.Administration           0.735041   0.264143      0   2.783 0.005390 ** 
#> mix.profile_code.Administration.Other             0.489695   0.263146      0   1.861 0.062755 .  
#> mix.profile_code.Other.Other                      0.439478   0.278216      0   1.580 0.114193    
#> mix.profile_code.Policy/Research.Other            1.028006   0.259063      0   3.968  < 1e-04 ***
#> mix.profile_code.Teacher.Other                    0.412104   0.247085      0   1.668 0.095343 .  
#> mix.profile_code.Unclear.Other                    0.138546   0.319491      0   0.434 0.664545    
#> mix.profile_code.Administration.Policy/Research   0.415201   0.263286      0   1.577 0.114797    
#> mix.profile_code.Other.Policy/Research            0.362689   0.263793      0   1.375 0.169163    
#> mix.profile_code.Policy/Research.Policy/Research  0.749510   0.251597      0   2.979 0.002892 ** 
#> mix.profile_code.Teacher.Policy/Research          0.216281   0.247161      0   0.875 0.381541    
#> mix.profile_code.Unclear.Policy/Research          0.379460   0.286361      0   1.325 0.185134    
#> mix.profile_code.Administration.Teacher           0.635578   0.240539      0   2.642 0.008234 ** 
#> mix.profile_code.Other.Teacher                    0.686185   0.242986      0   2.824 0.004743 ** 
#> mix.profile_code.Policy/Research.Teacher          0.731733   0.244379      0   2.994 0.002751 ** 
#> mix.profile_code.Teacher.Teacher                  0.623727   0.232525      0   2.682 0.007309 ** 
#> mix.profile_code.Unclear.Teacher                  0.591886   0.247053      0   2.396 0.016585 *  
#> mix.profile_code.Administration.Unclear          -0.504453   0.313841      0  -1.607 0.107977    
#> mix.profile_code.Other.Unclear                    0.117043   0.315637      0   0.371 0.710776    
#> mix.profile_code.Policy/Research.Unclear          0.063245   0.297451      0   0.213 0.831621    
#> mix.profile_code.Teacher.Unclear                  0.080134   0.258251      0   0.310 0.756336    
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#>      Null Deviance: 329461  on 237656  degrees of freedom
#>  Residual Deviance:  35741  on 237629  degrees of freedom
#>  
#> AIC: 35795    BIC: 36075    (Smaller is better.)
#> Joining, by = "term"

3B. Endorsing

#> 
#> ==========================
#> Summary of model fit
#> ==========================
#> 
#> Formula:   gg ~ edges + mutual + nodecov("n_tweets") + nodemix("profile_code", 
#>     base = 25)
#> 
#> Iterations:  5 out of 30 
#> 
#> Monte Carlo MLE Results:
#>                                                   Estimate Std. Error MCMC % z value Pr(>|z|)    
#> edges                                            -4.304840   0.155870      0 -27.618  < 1e-04 ***
#> mutual                                            2.755104   0.041665      0  66.125  < 1e-04 ***
#> nodecov.n_tweets                                  0.298806   0.005544      0  53.894  < 1e-04 ***
#> mix.profile_code.Administration.Administration    0.800308   0.167877      0   4.767  < 1e-04 ***
#> mix.profile_code.Other.Administration             0.658639   0.169519      0   3.885 0.000102 ***
#> mix.profile_code.Policy/Research.Administration   0.695980   0.171350      0   4.062  < 1e-04 ***
#> mix.profile_code.Teacher.Administration           0.758270   0.161688      0   4.690  < 1e-04 ***
#> mix.profile_code.Unclear.Administration           0.342926   0.186515      0   1.839 0.065975 .  
#> mix.profile_code.Administration.Other             0.755279   0.171655      0   4.400  < 1e-04 ***
#> mix.profile_code.Other.Other                      0.456908   0.181746      0   2.514 0.011937 *  
#> mix.profile_code.Policy/Research.Other            0.739460   0.179328      0   4.124  < 1e-04 ***
#> mix.profile_code.Teacher.Other                    0.668976   0.163771      0   4.085  < 1e-04 ***
#> mix.profile_code.Unclear.Other                    0.277946   0.203963      0   1.363 0.172970    
#> mix.profile_code.Administration.Policy/Research   0.797051   0.167642      0   4.754  < 1e-04 ***
#> mix.profile_code.Other.Policy/Research            0.659795   0.171534      0   3.846 0.000120 ***
#> mix.profile_code.Policy/Research.Policy/Research  0.735273   0.168435      0   4.365  < 1e-04 ***
#> mix.profile_code.Teacher.Policy/Research          0.762931   0.163539      0   4.665  < 1e-04 ***
#> mix.profile_code.Unclear.Policy/Research          0.466388   0.190655      0   2.446 0.014435 *  
#> mix.profile_code.Administration.Teacher           0.611808   0.162195      0   3.772 0.000162 ***
#> mix.profile_code.Other.Teacher                    0.571671   0.161260      0   3.545 0.000393 ***
#> mix.profile_code.Policy/Research.Teacher          0.337815   0.162239      0   2.082 0.037324 *  
#> mix.profile_code.Teacher.Teacher                  0.652635   0.157122      0   4.154  < 1e-04 ***
#> mix.profile_code.Unclear.Teacher                  0.413473   0.166239      0   2.487 0.012874 *  
#> mix.profile_code.Administration.Unclear           0.109275   0.194849      0   0.561 0.574921    
#> mix.profile_code.Other.Unclear                    0.312056   0.198019      0   1.576 0.115051    
#> mix.profile_code.Policy/Research.Unclear          0.102418   0.197712      0   0.518 0.604446    
#> mix.profile_code.Teacher.Unclear                  0.269391   0.172532      0   1.561 0.118430    
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#>      Null Deviance: 341738  on 246512  degrees of freedom
#>  Residual Deviance:  67824  on 246485  degrees of freedom
#>  
#> AIC: 67878    BIC: 68159    (Smaller is better.)
#> Joining, by = "term"