str(DanishWelfare)
## 'data.frame': 180 obs. of 5 variables:
## $ Freq : num 1 4 1 8 6 14 8 41 100 175 ...
## $ Alcohol: Factor w/ 3 levels "<1","1-2",">2": 1 1 1 1 1 1 1 1 1 1 ...
## $ Income : Factor w/ 4 levels "0-50","50-100",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Status : Factor w/ 3 levels "Widow","Married",..: 1 1 1 1 1 2 2 2 2 2 ...
## $ Urban : Factor w/ 5 levels "Copenhagen","SubCopenhagen",..: 1 2 3 4 5 1 2 3 4 5 ...
sum(DanishWelfare$Freq)
## [1] 5144
ordered(DanishWelfare$Alcohol)
## [1] <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
## [18] <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
## [35] <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
## [52] <1 <1 <1 <1 <1 <1 <1 <1 <1 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2
## [69] 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2
## [86] 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2
## [103] 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2
## [120] 1-2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2
## [137] >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2
## [154] >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2 >2
## [171] >2 >2 >2 >2 >2 >2 >2 >2 >2 >2
## Levels: <1 < 1-2 < >2
ordered(DanishWelfare$Income)
## [1] 0-50 0-50 0-50 0-50 0-50 0-50 0-50 0-50
## [9] 0-50 0-50 0-50 0-50 0-50 0-50 0-50 50-100
## [17] 50-100 50-100 50-100 50-100 50-100 50-100 50-100 50-100
## [25] 50-100 50-100 50-100 50-100 50-100 50-100 100-150 100-150
## [33] 100-150 100-150 100-150 100-150 100-150 100-150 100-150 100-150
## [41] 100-150 100-150 100-150 100-150 100-150 >150 >150 >150
## [49] >150 >150 >150 >150 >150 >150 >150 >150
## [57] >150 >150 >150 >150 0-50 0-50 0-50 0-50
## [65] 0-50 0-50 0-50 0-50 0-50 0-50 0-50 0-50
## [73] 0-50 0-50 0-50 50-100 50-100 50-100 50-100 50-100
## [81] 50-100 50-100 50-100 50-100 50-100 50-100 50-100 50-100
## [89] 50-100 50-100 100-150 100-150 100-150 100-150 100-150 100-150
## [97] 100-150 100-150 100-150 100-150 100-150 100-150 100-150 100-150
## [105] 100-150 >150 >150 >150 >150 >150 >150 >150
## [113] >150 >150 >150 >150 >150 >150 >150 >150
## [121] 0-50 0-50 0-50 0-50 0-50 0-50 0-50 0-50
## [129] 0-50 0-50 0-50 0-50 0-50 0-50 0-50 50-100
## [137] 50-100 50-100 50-100 50-100 50-100 50-100 50-100 50-100
## [145] 50-100 50-100 50-100 50-100 50-100 50-100 100-150 100-150
## [153] 100-150 100-150 100-150 100-150 100-150 100-150 100-150 100-150
## [161] 100-150 100-150 100-150 100-150 100-150 >150 >150 >150
## [169] >150 >150 >150 >150 >150 >150 >150 >150
## [177] >150 >150 >150 >150
## Levels: 0-50 < 50-100 < 100-150 < >150
ftable(xtabs(Freq ~ Alcohol + Income + Status + Urban, data = DanishWelfare))
## Urban Copenhagen SubCopenhagen LargeCity City Country
## Alcohol Income Status
## <1 0-50 Widow 1 4 1 8 6
## Married 14 8 41 100 175
## Unmarried 6 1 2 6 9
## 50-100 Widow 8 2 7 14 5
## Married 42 51 62 234 255
## Unmarried 7 5 9 20 27
## 100-150 Widow 2 3 1 5 2
## Married 21 30 23 87 77
## Unmarried 3 2 1 12 4
## >150 Widow 42 29 17 95 46
## Married 24 30 50 167 232
## Unmarried 33 24 15 64 68
## 1-2 0-50 Widow 3 0 1 4 2
## Married 15 7 15 25 48
## Unmarried 2 3 9 9 7
## 50-100 Widow 1 1 3 8 4
## Married 39 59 68 172 143
## Unmarried 12 3 11 20 23
## 100-150 Widow 5 4 1 9 4
## Married 32 68 43 128 86
## Unmarried 6 10 5 21 15
## >150 Widow 26 34 14 48 24
## Married 43 76 70 198 136
## Unmarried 36 23 48 89 64
## >2 0-50 Widow 2 0 2 1 0
## Married 1 2 2 7 7
## Unmarried 3 0 1 5 1
## 50-100 Widow 3 0 2 1 3
## Married 14 21 14 38 35
## Unmarried 2 0 3 12 13
## 100-150 Widow 2 1 1 1 0
## Married 20 31 10 36 21
## Unmarried 0 2 3 9 7
## >150 Widow 21 13 5 20 8
## Married 23 47 21 53 36
## Unmarried 38 20 13 39 26
TotalFreqbyCategory <- aggregate(Freq ~ Urban, data=DanishWelfare, sum)
TotalFreqbyCategory
## Urban Freq
## 1 Copenhagen 552
## 2 SubCopenhagen 614
## 3 LargeCity 594
## 4 City 1765
## 5 Country 1619
str(UKSoccer)
## table [1:5, 1:5] 27 59 28 19 7 29 53 32 14 8 ...
## - attr(*, "dimnames")=List of 2
## ..$ Home: chr [1:5] "0" "1" "2" "3" ...
## ..$ Away: chr [1:5] "0" "1" "2" "3" ...
sum(UKSoccer[,])
## [1] 380
prop.table(margin.table(UKSoccer,1))
## Home
## 0 1 2 3 4
## 0.20000000 0.37368421 0.23684211 0.11842105 0.07105263
prop.table(margin.table(UKSoccer,2))
## Away
## 0 1 2 3 4
## 0.36842105 0.35789474 0.14473684 0.10000000 0.02894737
ftable(Saxony)
## Saxony 3 7 24 45 104 181 286 478 670 829 1033 1112 1343
##
## 1 1 1 1 1 1 1 1 1 1 1 1 1
Saxony
## nMales
## 0 1 2 3 4 5 6 7 8 9 10 11 12
## 3 24 104 286 670 1033 1343 1112 829 478 181 45 7
str(Geissler)
## 'data.frame': 90 obs. of 4 variables:
## $ boys : int 0 0 0 0 0 0 0 0 0 0 ...
## $ girls: num 1 2 3 4 5 6 7 8 9 10 ...
## $ size : num 1 2 3 4 5 6 7 8 9 10 ...
## $ Freq : int 108719 42860 17395 7004 2839 1096 436 161 66 30 ...
sax12 <- subset(Geissler,Geissler$size == 12)
sax12
## boys girls size Freq
## 12 0 12 12 3
## 24 1 11 12 24
## 35 2 10 12 104
## 45 3 9 12 286
## 54 4 8 12 670
## 62 5 7 12 1033
## 69 6 6 12 1343
## 75 7 5 12 1112
## 80 8 4 12 829
## 84 9 3 12 478
## 87 10 2 12 181
## 89 11 1 12 45
## 90 12 0 12 7
sax12boysfreq <- subset(sax12,select = c(boys,Freq))
sax12boysfreq
## boys Freq
## 12 0 3
## 24 1 24
## 35 2 104
## 45 3 286
## 54 4 670
## 62 5 1033
## 69 6 1343
## 75 7 1112
## 80 8 829
## 84 9 478
## 87 10 181
## 89 11 45
## 90 12 7
xtabs(Freq ~ boys,data = sax12)
## boys
## 0 1 2 3 4 5 6 7 8 9 10 11 12
## 3 24 104 286 670 1033 1343 1112 829 478 181 45 7