Fernando Torres H.
07/09/2018
Predictors
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,1)
## Q* = 5.1789, df = 9, p-value = 0.8184
##
## Model df: 1. Total lags used: 10
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,2)
## Q* = 5.4877, df = 8, p-value = 0.7044
##
## Model df: 2. Total lags used: 10
AutoArima
## ME RMSE MAE MPE MAPE MASE
## Training set -0.9533837 4.246097 3.506598 -1.163669 3.723640 0.8370144
## Test set 2.8351020 2.908660 2.835102 3.122545 3.122545 0.6767303
## ACF1 Theil's U
## Training set -0.2249606 NA
## Test set -0.5000000 1.680848
Manual Tunning
## ME RMSE MAE MPE MAPE MASE
## Training set -0.9239521 4.187894 3.415028 -1.128631 3.626349 0.8151569
## Test set 3.1064190 3.208963 3.106419 3.420638 3.420638 0.7414929
## ACF1 Theil's U
## Training set -0.09791375 NA
## Test set -0.50000000 1.770523
This model must be trained with the data of the hotel in analysis
library(parallel)
# Calculate the number of cores
no_cores <- detectCores() - 1
# Initiate cluster
cl <- makeCluster(no_cores, type="FORK")## + Fold1: mtry= 2, min.node.size=5, splitrule=variance
## - Fold1: mtry= 2, min.node.size=5, splitrule=variance
## + Fold1: mtry= 13, min.node.size=5, splitrule=variance
## - Fold1: mtry= 13, min.node.size=5, splitrule=variance
## + Fold1: mtry= 25, min.node.size=5, splitrule=variance
## - Fold1: mtry= 25, min.node.size=5, splitrule=variance
## + Fold1: mtry= 37, min.node.size=5, splitrule=variance
## - Fold1: mtry= 37, min.node.size=5, splitrule=variance
## + Fold1: mtry= 48, min.node.size=5, splitrule=variance
## - Fold1: mtry= 48, min.node.size=5, splitrule=variance
## + Fold1: mtry= 60, min.node.size=5, splitrule=variance
## - Fold1: mtry= 60, min.node.size=5, splitrule=variance
## + Fold1: mtry= 72, min.node.size=5, splitrule=variance
## - Fold1: mtry= 72, min.node.size=5, splitrule=variance
## + Fold1: mtry= 83, min.node.size=5, splitrule=variance
## - Fold1: mtry= 83, min.node.size=5, splitrule=variance
## + Fold1: mtry= 95, min.node.size=5, splitrule=variance
## - Fold1: mtry= 95, min.node.size=5, splitrule=variance
## + Fold1: mtry=107, min.node.size=5, splitrule=variance
## - Fold1: mtry=107, min.node.size=5, splitrule=variance
## + Fold1: mtry= 2, min.node.size=5, splitrule=extratrees
## - Fold1: mtry= 2, min.node.size=5, splitrule=extratrees
## + Fold1: mtry= 13, min.node.size=5, splitrule=extratrees
## - Fold1: mtry= 13, min.node.size=5, splitrule=extratrees
## + Fold1: mtry= 25, min.node.size=5, splitrule=extratrees
## - Fold1: mtry= 25, min.node.size=5, splitrule=extratrees
## + Fold1: mtry= 37, min.node.size=5, splitrule=extratrees
## - Fold1: mtry= 37, min.node.size=5, splitrule=extratrees
## + Fold1: mtry= 48, min.node.size=5, splitrule=extratrees
## - Fold1: mtry= 48, min.node.size=5, splitrule=extratrees
## + Fold1: mtry= 60, min.node.size=5, splitrule=extratrees
## - Fold1: mtry= 60, min.node.size=5, splitrule=extratrees
## + Fold1: mtry= 72, min.node.size=5, splitrule=extratrees
## - Fold1: mtry= 72, min.node.size=5, splitrule=extratrees
## + Fold1: mtry= 83, min.node.size=5, splitrule=extratrees
## - Fold1: mtry= 83, min.node.size=5, splitrule=extratrees
## + Fold1: mtry= 95, min.node.size=5, splitrule=extratrees
## - Fold1: mtry= 95, min.node.size=5, splitrule=extratrees
## + Fold1: mtry=107, min.node.size=5, splitrule=extratrees
## - Fold1: mtry=107, min.node.size=5, splitrule=extratrees
## + Fold2: mtry= 2, min.node.size=5, splitrule=variance
## - Fold2: mtry= 2, min.node.size=5, splitrule=variance
## + Fold2: mtry= 13, min.node.size=5, splitrule=variance
## - Fold2: mtry= 13, min.node.size=5, splitrule=variance
## + Fold2: mtry= 25, min.node.size=5, splitrule=variance
## - Fold2: mtry= 25, min.node.size=5, splitrule=variance
## + Fold2: mtry= 37, min.node.size=5, splitrule=variance
## - Fold2: mtry= 37, min.node.size=5, splitrule=variance
## + Fold2: mtry= 48, min.node.size=5, splitrule=variance
## - Fold2: mtry= 48, min.node.size=5, splitrule=variance
## + Fold2: mtry= 60, min.node.size=5, splitrule=variance
## - Fold2: mtry= 60, min.node.size=5, splitrule=variance
## + Fold2: mtry= 72, min.node.size=5, splitrule=variance
## - Fold2: mtry= 72, min.node.size=5, splitrule=variance
## + Fold2: mtry= 83, min.node.size=5, splitrule=variance
## - Fold2: mtry= 83, min.node.size=5, splitrule=variance
## + Fold2: mtry= 95, min.node.size=5, splitrule=variance
## - Fold2: mtry= 95, min.node.size=5, splitrule=variance
## + Fold2: mtry=107, min.node.size=5, splitrule=variance
## - Fold2: mtry=107, min.node.size=5, splitrule=variance
## + Fold2: mtry= 2, min.node.size=5, splitrule=extratrees
## - Fold2: mtry= 2, min.node.size=5, splitrule=extratrees
## + Fold2: mtry= 13, min.node.size=5, splitrule=extratrees
## - Fold2: mtry= 13, min.node.size=5, splitrule=extratrees
## + Fold2: mtry= 25, min.node.size=5, splitrule=extratrees
## - Fold2: mtry= 25, min.node.size=5, splitrule=extratrees
## + Fold2: mtry= 37, min.node.size=5, splitrule=extratrees
## - Fold2: mtry= 37, min.node.size=5, splitrule=extratrees
## + Fold2: mtry= 48, min.node.size=5, splitrule=extratrees
## - Fold2: mtry= 48, min.node.size=5, splitrule=extratrees
## + Fold2: mtry= 60, min.node.size=5, splitrule=extratrees
## - Fold2: mtry= 60, min.node.size=5, splitrule=extratrees
## + Fold2: mtry= 72, min.node.size=5, splitrule=extratrees
## - Fold2: mtry= 72, min.node.size=5, splitrule=extratrees
## + Fold2: mtry= 83, min.node.size=5, splitrule=extratrees
## - Fold2: mtry= 83, min.node.size=5, splitrule=extratrees
## + Fold2: mtry= 95, min.node.size=5, splitrule=extratrees
## - Fold2: mtry= 95, min.node.size=5, splitrule=extratrees
## + Fold2: mtry=107, min.node.size=5, splitrule=extratrees
## - Fold2: mtry=107, min.node.size=5, splitrule=extratrees
## + Fold3: mtry= 2, min.node.size=5, splitrule=variance
## - Fold3: mtry= 2, min.node.size=5, splitrule=variance
## + Fold3: mtry= 13, min.node.size=5, splitrule=variance
## - Fold3: mtry= 13, min.node.size=5, splitrule=variance
## + Fold3: mtry= 25, min.node.size=5, splitrule=variance
## - Fold3: mtry= 25, min.node.size=5, splitrule=variance
## + Fold3: mtry= 37, min.node.size=5, splitrule=variance
## - Fold3: mtry= 37, min.node.size=5, splitrule=variance
## + Fold3: mtry= 48, min.node.size=5, splitrule=variance
## - Fold3: mtry= 48, min.node.size=5, splitrule=variance
## + Fold3: mtry= 60, min.node.size=5, splitrule=variance
## - Fold3: mtry= 60, min.node.size=5, splitrule=variance
## + Fold3: mtry= 72, min.node.size=5, splitrule=variance
## - Fold3: mtry= 72, min.node.size=5, splitrule=variance
## + Fold3: mtry= 83, min.node.size=5, splitrule=variance
## - Fold3: mtry= 83, min.node.size=5, splitrule=variance
## + Fold3: mtry= 95, min.node.size=5, splitrule=variance
## - Fold3: mtry= 95, min.node.size=5, splitrule=variance
## + Fold3: mtry=107, min.node.size=5, splitrule=variance
## - Fold3: mtry=107, min.node.size=5, splitrule=variance
## + Fold3: mtry= 2, min.node.size=5, splitrule=extratrees
## - Fold3: mtry= 2, min.node.size=5, splitrule=extratrees
## + Fold3: mtry= 13, min.node.size=5, splitrule=extratrees
## - Fold3: mtry= 13, min.node.size=5, splitrule=extratrees
## + Fold3: mtry= 25, min.node.size=5, splitrule=extratrees
## - Fold3: mtry= 25, min.node.size=5, splitrule=extratrees
## + Fold3: mtry= 37, min.node.size=5, splitrule=extratrees
## - Fold3: mtry= 37, min.node.size=5, splitrule=extratrees
## + Fold3: mtry= 48, min.node.size=5, splitrule=extratrees
## - Fold3: mtry= 48, min.node.size=5, splitrule=extratrees
## + Fold3: mtry= 60, min.node.size=5, splitrule=extratrees
## - Fold3: mtry= 60, min.node.size=5, splitrule=extratrees
## + Fold3: mtry= 72, min.node.size=5, splitrule=extratrees
## - Fold3: mtry= 72, min.node.size=5, splitrule=extratrees
## + Fold3: mtry= 83, min.node.size=5, splitrule=extratrees
## - Fold3: mtry= 83, min.node.size=5, splitrule=extratrees
## + Fold3: mtry= 95, min.node.size=5, splitrule=extratrees
## - Fold3: mtry= 95, min.node.size=5, splitrule=extratrees
## + Fold3: mtry=107, min.node.size=5, splitrule=extratrees
## - Fold3: mtry=107, min.node.size=5, splitrule=extratrees
## + Fold4: mtry= 2, min.node.size=5, splitrule=variance
## - Fold4: mtry= 2, min.node.size=5, splitrule=variance
## + Fold4: mtry= 13, min.node.size=5, splitrule=variance
## - Fold4: mtry= 13, min.node.size=5, splitrule=variance
## + Fold4: mtry= 25, min.node.size=5, splitrule=variance
## - Fold4: mtry= 25, min.node.size=5, splitrule=variance
## + Fold4: mtry= 37, min.node.size=5, splitrule=variance
## - Fold4: mtry= 37, min.node.size=5, splitrule=variance
## + Fold4: mtry= 48, min.node.size=5, splitrule=variance
## - Fold4: mtry= 48, min.node.size=5, splitrule=variance
## + Fold4: mtry= 60, min.node.size=5, splitrule=variance
## - Fold4: mtry= 60, min.node.size=5, splitrule=variance
## + Fold4: mtry= 72, min.node.size=5, splitrule=variance
## - Fold4: mtry= 72, min.node.size=5, splitrule=variance
## + Fold4: mtry= 83, min.node.size=5, splitrule=variance
## - Fold4: mtry= 83, min.node.size=5, splitrule=variance
## + Fold4: mtry= 95, min.node.size=5, splitrule=variance
## - Fold4: mtry= 95, min.node.size=5, splitrule=variance
## + Fold4: mtry=107, min.node.size=5, splitrule=variance
## - Fold4: mtry=107, min.node.size=5, splitrule=variance
## + Fold4: mtry= 2, min.node.size=5, splitrule=extratrees
## - Fold4: mtry= 2, min.node.size=5, splitrule=extratrees
## + Fold4: mtry= 13, min.node.size=5, splitrule=extratrees
## - Fold4: mtry= 13, min.node.size=5, splitrule=extratrees
## + Fold4: mtry= 25, min.node.size=5, splitrule=extratrees
## - Fold4: mtry= 25, min.node.size=5, splitrule=extratrees
## + Fold4: mtry= 37, min.node.size=5, splitrule=extratrees
## - Fold4: mtry= 37, min.node.size=5, splitrule=extratrees
## + Fold4: mtry= 48, min.node.size=5, splitrule=extratrees
## - Fold4: mtry= 48, min.node.size=5, splitrule=extratrees
## + Fold4: mtry= 60, min.node.size=5, splitrule=extratrees
## - Fold4: mtry= 60, min.node.size=5, splitrule=extratrees
## + Fold4: mtry= 72, min.node.size=5, splitrule=extratrees
## - Fold4: mtry= 72, min.node.size=5, splitrule=extratrees
## + Fold4: mtry= 83, min.node.size=5, splitrule=extratrees
## - Fold4: mtry= 83, min.node.size=5, splitrule=extratrees
## + Fold4: mtry= 95, min.node.size=5, splitrule=extratrees
## - Fold4: mtry= 95, min.node.size=5, splitrule=extratrees
## + Fold4: mtry=107, min.node.size=5, splitrule=extratrees
## - Fold4: mtry=107, min.node.size=5, splitrule=extratrees
## + Fold5: mtry= 2, min.node.size=5, splitrule=variance
## - Fold5: mtry= 2, min.node.size=5, splitrule=variance
## + Fold5: mtry= 13, min.node.size=5, splitrule=variance
## - Fold5: mtry= 13, min.node.size=5, splitrule=variance
## + Fold5: mtry= 25, min.node.size=5, splitrule=variance
## - Fold5: mtry= 25, min.node.size=5, splitrule=variance
## + Fold5: mtry= 37, min.node.size=5, splitrule=variance
## - Fold5: mtry= 37, min.node.size=5, splitrule=variance
## + Fold5: mtry= 48, min.node.size=5, splitrule=variance
## - Fold5: mtry= 48, min.node.size=5, splitrule=variance
## + Fold5: mtry= 60, min.node.size=5, splitrule=variance
## - Fold5: mtry= 60, min.node.size=5, splitrule=variance
## + Fold5: mtry= 72, min.node.size=5, splitrule=variance
## - Fold5: mtry= 72, min.node.size=5, splitrule=variance
## + Fold5: mtry= 83, min.node.size=5, splitrule=variance
## - Fold5: mtry= 83, min.node.size=5, splitrule=variance
## + Fold5: mtry= 95, min.node.size=5, splitrule=variance
## - Fold5: mtry= 95, min.node.size=5, splitrule=variance
## + Fold5: mtry=107, min.node.size=5, splitrule=variance
## - Fold5: mtry=107, min.node.size=5, splitrule=variance
## + Fold5: mtry= 2, min.node.size=5, splitrule=extratrees
## - Fold5: mtry= 2, min.node.size=5, splitrule=extratrees
## + Fold5: mtry= 13, min.node.size=5, splitrule=extratrees
## - Fold5: mtry= 13, min.node.size=5, splitrule=extratrees
## + Fold5: mtry= 25, min.node.size=5, splitrule=extratrees
## - Fold5: mtry= 25, min.node.size=5, splitrule=extratrees
## + Fold5: mtry= 37, min.node.size=5, splitrule=extratrees
## - Fold5: mtry= 37, min.node.size=5, splitrule=extratrees
## + Fold5: mtry= 48, min.node.size=5, splitrule=extratrees
## - Fold5: mtry= 48, min.node.size=5, splitrule=extratrees
## + Fold5: mtry= 60, min.node.size=5, splitrule=extratrees
## - Fold5: mtry= 60, min.node.size=5, splitrule=extratrees
## + Fold5: mtry= 72, min.node.size=5, splitrule=extratrees
## - Fold5: mtry= 72, min.node.size=5, splitrule=extratrees
## + Fold5: mtry= 83, min.node.size=5, splitrule=extratrees
## - Fold5: mtry= 83, min.node.size=5, splitrule=extratrees
## + Fold5: mtry= 95, min.node.size=5, splitrule=extratrees
## - Fold5: mtry= 95, min.node.size=5, splitrule=extratrees
## + Fold5: mtry=107, min.node.size=5, splitrule=extratrees
## - Fold5: mtry=107, min.node.size=5, splitrule=extratrees
## Aggregating results
## Selecting tuning parameters
## Fitting mtry = 2, splitrule = variance, min.node.size = 5 on full training set
# Stop parallel computing
stopCluster(cl)## ranger variable importance
##
## only 20 most important variables shown (out of 107)
##
## Overall
## Wholeyear_week49 100.00
## National_ADR_Lux 99.60
## Weekendyes 90.64
## ADR_Mercado 66.91
## Month05 50.63
## Wholeyear_week21 44.24
## Wholeyear_week52 41.21
## Month02 40.72
## Month06 39.94
## Month12 36.07
## Wholeyear_week15 34.65
## Month10 34.26
## Holidayyes 33.77
## Wholeyear_week19 32.71
## Wholeyear_week26 30.66
## Wholeyear_week08 28.86
## GoodWeatheryes 26.90
## Wholeyear_week03 25.99
## Wholeyear_week34 25.98
## Wholeyear_week18 24.95
## RMSE Rsquared MAE Resample
## 1 1.719262 0.009438843 1.411568 Fold1
## 2 1.691215 0.031882053 1.398527 Fold3
## 3 1.678387 0.056666844 1.384714 Fold5
## 4 1.694757 0.023463762 1.412371 Fold2
## 5 1.698751 0.027569647 1.405008 Fold4
## + Fold1: mtry= 2
## - Fold1: mtry= 2
## + Fold1: mtry= 55
## - Fold1: mtry= 55
## + Fold1: mtry=108
## - Fold1: mtry=108
## + Fold2: mtry= 2
## - Fold2: mtry= 2
## + Fold2: mtry= 55
## - Fold2: mtry= 55
## + Fold2: mtry=108
## - Fold2: mtry=108
## + Fold3: mtry= 2
## - Fold3: mtry= 2
## + Fold3: mtry= 55
## - Fold3: mtry= 55
## + Fold3: mtry=108
## - Fold3: mtry=108
## + Fold4: mtry= 2
## - Fold4: mtry= 2
## + Fold4: mtry= 55
## - Fold4: mtry= 55
## + Fold4: mtry=108
## - Fold4: mtry=108
## + Fold5: mtry= 2
## - Fold5: mtry= 2
## + Fold5: mtry= 55
## - Fold5: mtry= 55
## + Fold5: mtry=108
## - Fold5: mtry=108
## Aggregating results
## Selecting tuning parameters
## Fitting mtry = 55 on full training set
## ROC Sens Spec Resample
## 1 0.8684702 0.8638961 0.7112676 Fold1
## 2 0.8637218 0.8894081 0.6028202 Fold3
## 3 0.8695320 0.8707165 0.6839013 Fold2
## 4 0.8702965 0.8872727 0.6486486 Fold5
## 5 0.8649469 0.8712357 0.6568743 Fold4
## rf variable importance
##
## only 20 most important variables shown (out of 108)
##
## Overall
## ADR 100.000
## HotelEspana 76.538
## ADR_Mercado 65.146
## National_ADR_Lux 40.057
## HotelGalapagosSuites 36.385
## HotelCucuve 19.788
## HotelLaZayapa 7.149
## Weekendyes 6.977
## Month08 6.343
## GoodWeatheryes 4.572
## Wholeyear_week52 3.408
## Wholeyear_week29 3.294
## Date10 3.280
## Holidayyes 3.128
## Date3 2.915
## Date18 2.890
## Date2 2.876
## Month07 2.875
## Date7 2.867
## Wholeyear_week28 2.780
## Confusion Matrix and Statistics
##
## Reference
## Prediction No Yes
## No 885 102
## Yes 146 354
##
## Accuracy : 0.8332
## 95% CI : (0.8133, 0.8518)
## No Information Rate : 0.6933
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.6181
## Mcnemar's Test P-Value : 0.006324
##
## Sensitivity : 0.8584
## Specificity : 0.7763
## Pos Pred Value : 0.8967
## Neg Pred Value : 0.7080
## Prevalence : 0.6933
## Detection Rate : 0.5952
## Detection Prevalence : 0.6638
## Balanced Accuracy : 0.8174
##
## 'Positive' Class : No
##