September 7, 2018

Remarks from KDD

  • 可以開始研究如何把我們在Second Price Auction的應用拓展到First Price
    • Challenge: Where is the data of first price auction?
  • 我認為在 KDD 2018 Deep Censored Learning 之中,我們測試三種 parametric distribution 不是對的方向
    • 我希望可以有更有彈性的,對於 distribution 的描述

Problem Definition

  • \(y\) 是 winning price
  • \(X\) 是 features
  • 給定一個數列\(0 < tau_1 < \tau_2 < ... < \tau_k < 1\)
  • 如果用\(q_{\tau}\)代表\(y\)的\(\tau\)-quantile,我希望找到\(q_{\tau_1} \leq q_{\tau_2} \leq ... \leq q_{\tau_k} | X\) 的估計
  • 只要\(\tau\) 夠密,這就是一個描述CDF的方式,可能會比現有的parametric way 更有彈性

Possible Solution: Deep Quantile Regression

  • Deep Quantile Regression, A blog posted at Mar. 25.
  • \(y\) is an observed winning price, \(x\) is the features, \(f(\tau, x)\)表示基於\(x\)預測的\(\tau\)-quantile
  • Loss:

\[\mathbb{L}(\delta = y - f(\tau, x)) = \left\{\begin{array}{lc} \tau \delta & \text{ if } \delta \geq 0, \\ (\tau - 1) \delta & \text{ if } \delta < 0. \end{array}\right.\]

Loss Function

Loss Function

  • It is trivial to implement \(\tau\)-quantile regression in Keras
  • However, can we estimate a series of quantile at the same time?
    • Yes, multi-task learning
    • Challenge: cross-over \(\hat{q}_{\tau_1} > \hat{q}_{\tau_2}\)
  • Existed Implementation: Keras Quantile Model
  • Quantile Loss in Tensorflow

Loss for Censored Quantile Regression

\[\mathbb{L}(\delta = y - max(C, f(\tau, x))) = \left\{\begin{array}{lc} \tau \delta & \text{ if } \delta \geq 0, \\ (\tau - 1) \delta & \text{ if } \delta < 0. \end{array}\right.\]