#c1-c3
#Note: Summersmrdataset is my 2017 preliminary data on soil microbial respiration (using T4 data)
library(ggplot2)
summer.2017<-read.csv("summersmrdata.csv",header=TRUE)
head(summer.2017)
##   Sample   Forest   Age Stand Plot Treatment Horizon    T4
## 1      1 Bartlett Young    C1    1         P      Oe 11.62
## 2      2 Bartlett Young    C1    2         N      Oe  9.08
## 3      3 Bartlett Young    C1    3       Con      Oe 10.08
## 4      4 Bartlett Young    C1    4        NP      Oe  5.09
## 5      5 Bartlett Young    C2    1        NP      Oe  6.69
## 6      6 Bartlett Young    C2    2       Con      Oe 12.45
summer.2017.plot<- ggplot(summer.2017,aes(x= Treatment,y=T4,colour=Stand))+geom_point()+theme_bw()
summer.2017.plot

#c4toc6
summer.2017b<-read.csv("c4toc6.csv",header=TRUE)
head(summer.2017b)
##   Sample   Forest Age Stand Plot Treatment Horizon    T4
## 1     13 Bartlett Mid    C4    1        NP      Oe  9.51
## 2     14 Bartlett Mid    C4    2         N      Oe 11.11
## 3     15 Bartlett Mid    C4    3       Con      Oe 14.26
## 4     16 Bartlett Mid    C4    4         P      Oe 17.44
## 5     17 Bartlett Mid    C5    1       Con      Oe 10.04
## 6     18 Bartlett Mid    C5    2        NP      Oe  8.66
summer.2017.plotb<- ggplot(summer.2017b,aes(x= Treatment,y=T4,colour=Stand))+geom_point()+theme_bw()
summer.2017.plotb

#c7tohb
summer.2017c<-read.csv("c7tohb.csv",header=TRUE)
head(summer.2017c)
##   ï..Sample   Forest    Age Stand Plot Treatment Horizon    T4
## 1        25 Bartlett Mature    C7    1         N      Oe  9.74
## 2        26 Bartlett Mature    C7    2        NP      Oe 12.39
## 3        27 Bartlett Mature    C7    3         P      Oe 15.29
## 4        28 Bartlett Mature    C7    4       Con      Oe  9.20
## 5        29 Bartlett Mature    C8    1         P      Oe  9.14
## 6        30 Bartlett Mature    C8    2       Con      Oe  4.45
summer.2017.plotc<- ggplot(summer.2017c,aes(x= Treatment,y=T4,colour=Stand))+geom_point()+theme_bw()
summer.2017.plotc

#Predicted plots for hypotheses
#CUE plotting
getwd()
## [1] "C:/Users/Paul/Documents/Rwork"
setwd("C:/Users/Paul/Documents/Rwork")
library(ggplot2)
cue<-read.csv("predictions2.csv",header=TRUE)
head(cue)
##   ï..Sample   Forest   Age Stand Plot Treatment Horizon  CUE SMR..
## 1         1 Bartlett Young    C1    1         P      Oe 0.17 11.62
## 2         2 Bartlett Young    C1    2         N      Oe 0.24  9.08
## 3         3 Bartlett Young    C1    3       Con      Oe 0.10 10.08
## 4         4 Bartlett Young    C1    4        NP      Oe 0.31  5.09
##   Soil.C.... MBC   qCO2  SMR LML LML_LC
## 1       0.33 700 0.0011 0.75  60     70
## 2       0.48 750 0.0007 0.50  50     60
## 3       0.40 650 0.0015 1.00  70     80
## 4       0.55 800 0.0003 0.25  40     50
#CUE plot exploring horizon responses.
cue.plot1<- ggplot(cue,aes(x= Treatment,y=CUE,colour=MBC))+geom_point(alpha=0.6)+theme_bw()
cue.plot1

#SMR as a function of the MBC
smr.plot<- ggplot(cue,aes(x=MBC,y=SMR,colour=Treatment))+geom_point()+geom_smooth(method="lm")+theme_bw()
smr.plot

#CUE plot exploring CUE as a fuction of MBC
cue<-read.csv("predictions2.csv",header=TRUE)
head(cue)
##   ï..Sample   Forest   Age Stand Plot Treatment Horizon  CUE SMR..
## 1         1 Bartlett Young    C1    1         P      Oe 0.17 11.62
## 2         2 Bartlett Young    C1    2         N      Oe 0.24  9.08
## 3         3 Bartlett Young    C1    3       Con      Oe 0.10 10.08
## 4         4 Bartlett Young    C1    4        NP      Oe 0.31  5.09
##   Soil.C.... MBC   qCO2  SMR LML LML_LC
## 1       0.33 700 0.0011 0.75  60     70
## 2       0.48 750 0.0007 0.50  50     60
## 3       0.40 650 0.0015 1.00  70     80
## 4       0.55 800 0.0003 0.25  40     50
cue.plot2<- ggplot(cue,aes(x= MBC,y=CUE,colour=Treatment))+geom_point()+ geom_smooth(method="lm")+theme_bw()
cue.plot2

#qCO2 to treatment
cue<-read.csv("predictions2.csv",header=TRUE)
head(cue)
##   ï..Sample   Forest   Age Stand Plot Treatment Horizon  CUE SMR..
## 1         1 Bartlett Young    C1    1         P      Oe 0.17 11.62
## 2         2 Bartlett Young    C1    2         N      Oe 0.24  9.08
## 3         3 Bartlett Young    C1    3       Con      Oe 0.10 10.08
## 4         4 Bartlett Young    C1    4        NP      Oe 0.31  5.09
##   Soil.C.... MBC   qCO2  SMR LML LML_LC
## 1       0.33 700 0.0011 0.75  60     70
## 2       0.48 750 0.0007 0.50  50     60
## 3       0.40 650 0.0015 1.00  70     80
## 4       0.55 800 0.0003 0.25  40     50
cue.plot3<- ggplot(cue,aes(x=Treatment,y=qCO2))+geom_point()+ geom_smooth(method="lm")+theme_bw()
cue.plot3

#Litter loss
cue<-read.csv("predictions2.csv",header=TRUE)
head(cue)
##   ï..Sample   Forest   Age Stand Plot Treatment Horizon  CUE SMR..
## 1         1 Bartlett Young    C1    1         P      Oe 0.17 11.62
## 2         2 Bartlett Young    C1    2         N      Oe 0.24  9.08
## 3         3 Bartlett Young    C1    3       Con      Oe 0.10 10.08
## 4         4 Bartlett Young    C1    4        NP      Oe 0.31  5.09
##   Soil.C.... MBC   qCO2  SMR LML LML_LC
## 1       0.33 700 0.0011 0.75  60     70
## 2       0.48 750 0.0007 0.50  50     60
## 3       0.40 650 0.0015 1.00  70     80
## 4       0.55 800 0.0003 0.25  40     50
cue.plot4<- ggplot(cue,aes(x=Treatment,y=LML))+geom_point()+ geom_smooth(method="lm")+theme_bw()
cue.plot4

#Litter loss with labile carbon
cue<-read.csv("predictions2.csv",header=TRUE)
head(cue)
##   ï..Sample   Forest   Age Stand Plot Treatment Horizon  CUE SMR..
## 1         1 Bartlett Young    C1    1         P      Oe 0.17 11.62
## 2         2 Bartlett Young    C1    2         N      Oe 0.24  9.08
## 3         3 Bartlett Young    C1    3       Con      Oe 0.10 10.08
## 4         4 Bartlett Young    C1    4        NP      Oe 0.31  5.09
##   Soil.C.... MBC   qCO2  SMR LML LML_LC
## 1       0.33 700 0.0011 0.75  60     70
## 2       0.48 750 0.0007 0.50  50     60
## 3       0.40 650 0.0015 1.00  70     80
## 4       0.55 800 0.0003 0.25  40     50
cue.plot5<- ggplot(cue,aes(x=Treatment,y=LML_LC))+geom_point()+ geom_smooth(method="lm")+theme_bw()
cue.plot5