# class 조건 걸어 추출

if("dplyr" %in% installed.packages("dplyr") == FALSE)install.packages("dplyr")
library(dplyr)


exam <- read.csv("https://www.dropbox.com/s/zn24y4yccnm2g05/csv_exam.csv?dl=1")
head(exam)
class(exam)
exam %>% dplyr::filter(class==1)
# not equal 
exam %>% dplyr::filter(class!=1)
# and 
exam %>% dplyr::filter(class==1 & math > 50)
# or 
exam %>% dplyr::filter(class==1 | math > 50)
exam %>% dplyr::filter(class==1|class==3|class==5)
# or 구문 중첩하여 사용할 경우 아래와 같이 %in% 구문으로 대체 가능
exam %>% dplyr::filter(class %in% c(1,3,5))

class1 <- exam %>% dplyr::filter(class == 1)
mean(class1$math)
# math 전체를 가져옴
exam %>% select(math)
# math가 아닌 것들만 가져옴
exam %>% select(-math)

exam %>% 
  filter(class==1) %>% 
  select(english) %>% 
  head

# 1반의 수학점수를 내림차림으로 정렬하시오.
# 오름차순 arrange()
# 내림차순 arrange(des())
exam %>% 
  filter(class==1) %>% 
  select(math) %>% 
  arrange(desc(math))

exam %>% 
  arrange(class, desc(math)) %>% 
  mutate(total=math+english+science) %>% 
  head

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

LS0tDQp0aXRsZTogIjIwMTgwOTA4IGNsYXNzIG5vdGUiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCiMgY2xhc3Mg7KGw6rG0IOqxuOyWtCDstpTstpwNCg0KaWYoImRwbHlyIiAlaW4lIGluc3RhbGxlZC5wYWNrYWdlcygiZHBseXIiKSA9PSBGQUxTRSlpbnN0YWxsLnBhY2thZ2VzKCJkcGx5ciIpDQpsaWJyYXJ5KGRwbHlyKQ0KDQoNCmV4YW0gPC0gcmVhZC5jc3YoImh0dHBzOi8vd3d3LmRyb3Bib3guY29tL3Mvem4yNHk0eWNjbm0yZzA1L2Nzdl9leGFtLmNzdj9kbD0xIikNCmhlYWQoZXhhbSkNCmNsYXNzKGV4YW0pDQpleGFtICU+JSBkcGx5cjo6ZmlsdGVyKGNsYXNzPT0xKQ0KIyBub3QgZXF1YWwgDQpleGFtICU+JSBkcGx5cjo6ZmlsdGVyKGNsYXNzIT0xKQ0KIyBhbmQgDQpleGFtICU+JSBkcGx5cjo6ZmlsdGVyKGNsYXNzPT0xICYgbWF0aCA+IDUwKQ0KIyBvciANCmV4YW0gJT4lIGRwbHlyOjpmaWx0ZXIoY2xhc3M9PTEgfCBtYXRoID4gNTApDQpleGFtICU+JSBkcGx5cjo6ZmlsdGVyKGNsYXNzPT0xfGNsYXNzPT0zfGNsYXNzPT01KQ0KIyBvciDqtazrrLgg7KSR7LKp7ZWY7JesIOyCrOyaqe2VoCDqsr3smrAg7JWE656Y7JmAIOqwmeydtCAlaW4lIOq1rOusuOycvOuhnCDrjIDssrQg6rCA64qlDQpleGFtICU+JSBkcGx5cjo6ZmlsdGVyKGNsYXNzICVpbiUgYygxLDMsNSkpDQoNCmNsYXNzMSA8LSBleGFtICU+JSBkcGx5cjo6ZmlsdGVyKGNsYXNzID09IDEpDQptZWFuKGNsYXNzMSRtYXRoKQ0KIyBtYXRoIOyghOyytOulvCDqsIDsoLjsmLQNCmV4YW0gJT4lIHNlbGVjdChtYXRoKQ0KIyBtYXRo6rCAIOyVhOuLjCDqsoPrk6Trp4wg6rCA7KC47Ji0DQpleGFtICU+JSBzZWxlY3QoLW1hdGgpDQoNCmV4YW0gJT4lIA0KICBmaWx0ZXIoY2xhc3M9PTEpICU+JSANCiAgc2VsZWN0KGVuZ2xpc2gpICU+JSANCiAgaGVhZA0KDQojIDHrsJjsnZgg7IiY7ZWZ7KCQ7IiY66W8IOuCtOumvOywqOumvOycvOuhnCDsoJXroKztlZjsi5zsmKQuDQojIOyYpOumhOywqOyInCBhcnJhbmdlKCkNCiMg64K066a87LCo7IicIGFycmFuZ2UoZGVzKCkpDQpleGFtICU+JSANCiAgZmlsdGVyKGNsYXNzPT0xKSAlPiUgDQogIHNlbGVjdChtYXRoKSAlPiUgDQogIGFycmFuZ2UoZGVzYyhtYXRoKSkNCg0KZXhhbSAlPiUgDQogIGFycmFuZ2UoY2xhc3MsIGRlc2MobWF0aCkpICU+JSANCiAgbXV0YXRlKHRvdGFsPW1hdGgrZW5nbGlzaCtzY2llbmNlKSAlPiUgDQogIGhlYWQNCmBgYA0KDQpBZGQgYSBuZXcgY2h1bmsgYnkgY2xpY2tpbmcgdGhlICpJbnNlcnQgQ2h1bmsqIGJ1dHRvbiBvbiB0aGUgdG9vbGJhciBvciBieSBwcmVzc2luZyAqQ3RybCtBbHQrSSouDQoNCldoZW4geW91IHNhdmUgdGhlIG5vdGVib29rLCBhbiBIVE1MIGZpbGUgY29udGFpbmluZyB0aGUgY29kZSBhbmQgb3V0cHV0IHdpbGwgYmUgc2F2ZWQgYWxvbmdzaWRlIGl0IChjbGljayB0aGUgKlByZXZpZXcqIGJ1dHRvbiBvciBwcmVzcyAqQ3RybCtTaGlmdCtLKiB0byBwcmV2aWV3IHRoZSBIVE1MIGZpbGUpLg0KDQpUaGUgcHJldmlldyBzaG93cyB5b3UgYSByZW5kZXJlZCBIVE1MIGNvcHkgb2YgdGhlIGNvbnRlbnRzIG9mIHRoZSBlZGl0b3IuIENvbnNlcXVlbnRseSwgdW5saWtlICpLbml0KiwgKlByZXZpZXcqIGRvZXMgbm90IHJ1biBhbnkgUiBjb2RlIGNodW5rcy4gSW5zdGVhZCwgdGhlIG91dHB1dCBvZiB0aGUgY2h1bmsgd2hlbiBpdCB3YXMgbGFzdCBydW4gaW4gdGhlIGVkaXRvciBpcyBkaXNwbGF5ZWQuDQo=