Remember the markdown documention is available in Help > Markdown quick reference.
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.
x = 10
x
## [1] 10
Si on exécute ce bloc plusieurs fois de suite on peut se retrouver avec un document dont l’état semble incohérent. Dans ce cas, il suffit de réexécuter toutes les cellules situées au dessus.
x = x+10
x
## [1] 20
Lorsque l’on knit par contre tout le code R est bien réexécuté deuis le début (mais dans processus séparé!).
Quelques exembles de tableau et de manipulation.
tab = c(2,5, 65,33)
tab
## [1] 2 5 65 33
tab[2]
## [1] 5
length(tab)
## [1] 4
En R, on préfèrera toujours l’écriture vectorielle et on évitera les boucles for.
# for(i in 1:length(tab)) {
# tab[i] = 2*tab[i]
# }
tab = tab*tab
tab
## [1] 4 25 4225 1089
Les tableaux sont automatiquement agrandis à la même taille si cea a du sens.
log(tab + c(1,4))
## [1] 1.609438 3.367296 8.349011 6.996681
Quelques exemples d’intialisation.
c(10, 20, 30, 50, 100, 200, 300)
## [1] 10 20 30 50 100 200 300
seq.int(from = 10, to = 200, by = 50)
## [1] 10 60 110 160
1:12
## [1] 1 2 3 4 5 6 7 8 9 10 11 12
mtcars
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
mtcars[1:5,3:5]
## disp hp drat
## Mazda RX4 160 110 3.90
## Mazda RX4 Wag 160 110 3.90
## Datsun 710 108 93 3.85
## Hornet 4 Drive 258 110 3.08
## Hornet Sportabout 360 175 3.15
cars$newcol = cos(cars$speed) + sin(cars$dist)
cars
## speed dist newcol
## 1 4 2 0.255653806
## 2 4 10 -1.197664732
## 3 7 4 -0.002900241
## 4 7 22 0.745050945
## 5 8 16 -0.433403350
## 6 9 10 -1.455151373
## 7 10 18 -1.590058776
## 8 10 26 -0.076513079
## 9 10 34 -0.309988843
## 10 11 17 -0.956971794
## 11 11 28 0.275331486
## 12 12 14 1.834461314
## 13 12 20 1.756799209
## 14 12 24 -0.061724403
## 15 12 28 1.114759747
## 16 13 26 1.670005232
## 17 13 34 1.436529468
## 18 13 34 1.436529468
## 19 13 46 1.809235129
## 20 14 26 0.899295669
## 21 14 36 -0.855041635
## 22 14 60 -0.168073403
## 23 14 80 -0.857151436
## 24 15 20 0.153257338
## 25 15 26 0.002870538
## 26 15 54 -1.318476962
## 27 16 32 -0.406232799
## 28 16 40 -0.212546320
## 29 17 32 0.276263343
## 30 17 40 0.469949822
## 31 17 50 -0.537538192
## 32 18 42 -0.256204840
## 33 18 56 0.138765706
## 34 18 76 1.226424345
## 35 18 84 1.393507028
## 36 19 36 -0.003074235
## 37 19 46 1.890492966
## 38 19 68 0.090776937
## 39 20 32 0.959508743
## 40 20 48 -0.360172600
## 41 20 52 1.394709654
## 42 20 56 -0.113468940
## 43 20 64 1.328108100
## 44 22 66 -1.026511980
## 45 23 54 -1.091622069
## 46 24 70 1.198069689
## 47 24 92 -0.355287062
## 48 24 93 -0.524103134
## 49 24 120 1.004790192
## 50 25 85 0.815127192
mtcars[mtcars$mpg>30 | mtcars$mpg<15,]
## mpg cyl disp hp drat wt qsec vs am gear carb
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Créons une nouvelle data frame.
df = data.frame(col1 = 1:10, col2 = runif(10))
df
## col1 col2
## 1 1 0.3796499
## 2 2 0.3528289
## 3 3 0.8419026
## 4 4 0.6249661
## 5 5 0.3731026
## 6 6 0.3816953
## 7 7 0.5830887
## 8 8 0.1275146
## 9 9 0.3156694
## 10 10 0.7647084
df = rbind(df,df)
dim(df)
## [1] 20 2
On échantillonne N=100 personnes. On propose à chacun un design A ou B et on sait à la fin s’ils sont satisfaits ou pas. Une stratégie possible consiste à présenter chaque design à N/2 personnes et à choisir le design qui a été le plus apprécié. C’est raisonnable et souvent on tombe juste, i.e., on trouve bien le design le plus populaire. Mais pas toujours… Quelle est la fiabilité réelle de cette approche ?
N = 200
pA = 0.85
pB = 0.9
NRepeat = 100000
# repA = rep.int(0, times=N/2) # Initialisation
# for (i in 1:length(repA)) { # Yuck!!!
# if(runif(1)<pA) {repA[i] = 1} else {repA[i] = 0}
# }
# repA = runif(N/2)<pA # Better
success = 0
for(i in 1:NRepeat) {
repA = sample(size=N/2, x = c(0,1), prob = c(1-pA,pA), replace=T) # Much better!
repB = sample(size=N/2, x = c(0,1), prob = c(1-pB,pB), replace=T) # Much better!
if(sum(repA)<sum(repB)) {
success = success + 1
}
}
success/NRepeat
## [1] 0.83309
Et comment cette fiabilité évolue-t-elle en fonction de N ?
reliability = function(N = 200, pA = 0.5, pB = 0.6, NRepeat = 100000) {
success = 0
for(i in 1:NRepeat) {
repA = sample(size=N/2, x = c(0,1), prob = c(1-pA,pA), replace=T) # Much better!
repB = sample(size=N/2, x = c(0,1), prob = c(1-pB,pB), replace=T) # Much better!
if(sum(repA)<sum(repB)) {
success = success + 1
}
}
return(success/NRepeat)
}
Nsamples = c(10,50,100,200,300)
Rely = c()
for(N in Nsamples) {
Rely = c(Rely, reliability(N))
}
plot(Nsamples,Rely, ylim=c(0,1))