Background

This is a report focusing on end of life care preferences and their implementation by the clinical care team. In particular, we will focus on the National Quality Forum Measure #1626:

Percentage of vulnerable adults admitted to ICU who survive at least 48 hours who have their care preferences documented within 48 hours OR documentation as to why this was not done.

For our purposeses:

Care preference documentation within 48hrs of admission, age >74.

Care provider/Patient interactions from the MIMIC-III Intensive Care Unit Database are analyzed within the framework of a hospital admission utilizing a series of Mixed Effects Models. The patient is the random effect, so we can explain the difference in variance explained by patients compared to that explained by other effects (when the patient is introduced to other demographic and clinical variables) in the model.

The use of fixed and random effects is deliberate. A fixed effect is used when a categorical variable contains all levels of interest. A random effect is used when a categorical variable contains only a sample of all levels of interest, the samples which do not exist are unobserved variables and, since their distributions do not exist, they will be estimated. The levels of the random effect are assumed to be independent of each other; this assumption requires a priori knowledge of the phenomenon being modeled.

Model 0 (No Covariates)

  1. Care Provider (Random)

Model 1a (Patient Demographics)

  1. Gender
  2. Age
  3. Ethnicity
  4. Marrital Status
  5. Care Provider (Random)

Model 1b (Clinical Variables)

  1. Sequential Organ Failure Assessment (SOFA)
  2. Care Provider (Random)

Model 2a (Demographics + ICU)

  1. Demographics (Model 1a)
  2. First Intensive Care Unit
  3. Care Provider (Random)

Model 2b (Clinical Variables + ICU)

  1. SOFA (Model 1b)
  2. First Intensive Care Unit
  3. Care Provider (Random)

Model 3 (Demographics + Clinical Variables + ICU)

We will use the Sequential Organ Failure Assessment (SOFA) from Illness Severity Scores (github) to determine the severity of illness at admission.

  1. Demographics (as in Model 1)
  2. First Intensive Care Unit
  3. SOFA Score (As Model 2)
  4. Care Provider (Random)

Attending check

attending_check <- function(dat){
    ## Temporary data frame
    tmp_frame <- data.frame()
    ## Results frame
    res <- data.frame()
    ## For each hospital admission
    for (name in unique(dat$HADM_ID)){
        ## Subset admission
        tmp_frame <- dat[dat$HADM_ID == name, ]
        ## If any care providers are "Attending"
        if (any("Attending" %in% tmp_frame$CG_DESCRIPTION)){
            ## add hospital admission to results
            res <- rbind(res, tmp_frame)
        }
    }
    ## Return control to outer level
    return(res)
}

Provider Caremeasure Check

provider_caremeasure_check <- function(dat){
    ## Create Caremeasure Variable
    dat$NQF <- rep(0, each = nrow(dat))
    ## Temporary hospital admission data frame
    tmp_frame <- data.frame()
    ## Temporary careprovider data frame
    cg_frame <- data.frame()
    ## Results frame
    res <- data.frame()
    
    ## For each hospital admission
    for (name in unique(dat$HADM_ID)){
        ## Subset admission
        tmp_frame <- dat[dat$HADM_ID == name, ]
        
        ## For each care provider
        for (id in unique(tmp_frame$CGID)){
            ## Subset provider
            cg_frame <- tmp_frame[tmp_frame$CGID == id, ]
            
            ## if care measure were implemented during the admission by the provider
            if (any(cg_frame$CIM.machine == 1)){
                ## Apply credit for entire admission
                cg_frame$NQF <- rep(1, each = nrow(cg_frame))
            }
            ## Bind
            res <- rbind(res, cg_frame)
        }
    }
    ## Return control to outer level
    return(res)
}

Team Caremeasure Check

team_caremeasure_check <- function(dat){
    ## Create Caremeasure Variable
    dat$NQF <- rep(0, each = nrow(dat))
    ## Temporary hospital admission data frame
    tmp_frame <- data.frame()
    ## Results frame
    res <- data.frame()
    ## For each hospital admission
    for (name in unique(dat$HADM_ID)){
        ## Subset admission
        tmp_frame <- dat[dat$HADM_ID == name, ]
        ## If ANY care provider documented care preferences
        if (any(tmp_frame$CIM.machine == 1)){
            ## Apply credit for entire admission
            tmp_frame$NQF <- rep(1, each = nrow(tmp_frame))
        }
        ## Bind
        res <- rbind(res, tmp_frame)
    }
        ## Return control to outer level
    return(res)
}

Expire Check

expire_check <- function(dat){
    ## Create Caremeasure Variable
    dat$HOSP_DEATH <- rep(0, each = nrow(dat))
    ## Temporary data frame
    tmp_frame <- data.frame()
    ## Results frame
    res <- data.frame()
    ## For each hospital admission
    for (name in unique(dat$HADM_ID)){
        ## Subset admission
        tmp_frame <- dat[dat$HADM_ID == name, ]
        ## If any admission has a death

            ## Check if pt expired in hospital
            if (any(tmp_frame$HOSPITAL_EXPIRE_FLAG == 1)){
                tmp_frame$HOSP_DEATH <- rep(1, each = nrow(tmp_frame))
            }
            ## add hospital admission to results
            res <- rbind(res, tmp_frame)
        
    }
    ## Return control to outer level
    return(res)
}

rocplot

rocplot <- function(pred, truth, ...) {
  predob = prediction(pred, truth)
  perf = performance(predob, "tpr", "fpr")
  plot(perf, ...)
  area <- auc(truth, pred)
  area <- format(round(area, 4), nsmall = 4)
  text(x=0.7, y=0.1, labels = paste("AUC =", area))

  # the reference x=y line
  segments(x0=0, y0=0, x1=1, y1=1, col="gray", lty=2)
}
model_info <- function(fit){
  #Summary info
  model_sum <- summary(fit)
  #Odds ratio, confidence interval
  odds_ratio <- cbind(OR = exp(fit$coef), exp(confint(fit)))
  #Create list for return
  my_list <- list(model_sum, odds_ratio)
  #names
  names(my_list) <- c("Model Summary","OR Summary")
  return(my_list)
}

Data Loading & Cleansing

## Latest Dataset of NeuroNER Predictions
#dat <- read.csv("~/nqf_dat.csv", header = T, stringsAsFactors = F)
dat <- read.csv("~/nqf_caregivers/data/20180607_EOL_data_ICU.csv", header = T, stringsAsFactors = F)
dim(dat)
## [1] 10250    57
## Note: Notes had been logged by multiple Care providers, we will reintroduce those annotations

## Load Labeled Note Data for NQF Caremeasure Cohort (From NOTEEVENTS table)
tmp <- read.csv("~/nqf_caregivers/data/note_labels_over75.csv", header = T, stringsAsFactors = F)
dim(tmp)
## [1] 11575    25
## Keep only TEXT and ROW_ID from tmp
tmp <- tmp[ ,c("ROW_ID", "TEXT")]

## Inner join
dat <- merge(tmp, dat, by = "TEXT")

## Clean tmp
rm(tmp)

## Check column names
colnames(dat)
##  [1] "TEXT"                 "ROW_ID.x"             "SUBJECT_ID"          
##  [4] "HADM_ID"              "ROW_ID.y"             "CHARTDATE"           
##  [7] "CHARTTIME"            "STORETIME"            "CATEGORY"            
## [10] "DESCRIPTION"          "CGID"                 "ISERROR"             
## [13] "ADMITTIME"            "DISCHTIME"            "DEATHTIME"           
## [16] "ADMISSION_TYPE"       "ADMISSION_LOCATION"   "DISCHARGE_LOCATION"  
## [19] "INSURANCE"            "LANGUAGE"             "RELIGION"            
## [22] "MARITAL_STATUS"       "ETHNICITY"            "EDREGTIME"           
## [25] "EDOUTTIME"            "DIAGNOSIS"            "HOSPITAL_EXPIRE_FLAG"
## [28] "HAS_CHARTEVENTS_DATA" "GENDER"               "DOB"                 
## [31] "DOD"                  "DOD_HOSP"             "DOD_SSN"             
## [34] "EXPIRE_FLAG"          "ICUSTAY_ID"           "DBSOURCE"            
## [37] "FIRST_CAREUNIT"       "LAST_CAREUNIT"        "FIRST_WARDID"        
## [40] "LAST_WARDID"          "INTIME"               "OUTTIME"             
## [43] "LOS"                  "AGE"                  "ADMISSION_NUMBER"    
## [46] "DAYS_UNTIL_DEATH"     "TIME_SINCE_ADMIT"     "CGID.1"              
## [49] "HADM_ID.1"            "FAM.machine"          "CIM.machine"         
## [52] "LIM.machine"          "CAR.machine"          "COD.machine"         
## [55] "check.CGID"           "check.dadm_id"        "CIM.or.FAM"          
## [58] "Died.in.Hospital"
## What is HADM_ID.1?
head(table(dat$HADM_ID.1))
## 
##   #N/A 100102 100153 100347 100391 100525 
##     32      8      3     12     15      2
## What is HADM_ID?
head(table(dat$HADM_ID))
## 
## 100102 100153 100347 100391 100525 100575 
##      8      3     12     15      2     11
## #N/A? Clean HADM_ID.1
dat$HADM_ID.1 <- NULL

## What is CGID.1?
head(table(dat$CGID.1))
## 
##  #N/A 14010 14022 14037 14045 14056 
##    32    22     1    93    37    14
## What is CGID
head(table(dat$CGID))
## 
## 14010 14022 14037 14045 14056 14080 
##    22     1    93    37    14     6
## #N/A? Clean CGID.1
dat$CGID.1 <- NULL

## What is check.CGID
head(table(dat$check.CGID))
##     0 
## 11575
## Clean it
dat$check.CGID <- NULL

## What is check.dadm_id?
head(table(dat$check.dadm_id))
##     0 
## 11575
## Clean it
dat$check.dadm_id <- NULL

## Clean column names
dat$ROW_ID.y <- NULL

colnames(dat)[which(colnames(dat) == "ROW_ID.x")] <- "ROW_ID"


## Load CAREGIVERS Table for join on CGID
cg <- read.csv("~/nqf_caregivers/data/mimic/CAREGIVERS.csv", 
               header = T, stringsAsFactors = F)

## Change column name of "NOTEEVENTS.DESCRIPTION" to explicitly mention that it describes the note
colnames(dat)[which(colnames(dat) == "DESCRIPTION")] <- "NOTE_DESCRIPTION"

## Change column name of "CAREGIVERS. DESCRIPTION" to explicitly mention that it describes the careprovider
colnames(cg)[which(colnames(cg) == "DESCRIPTION")] <- "CG_DESCRIPTION"

## Remove ROW_ID from CG
cg$ROW_ID <- NULL

## Remove TEXT
dat$TEXT <- NULL

## Merge to caregivers
dat <- merge(dat, cg, by = "CGID")
dim(dat)
## [1] 11575    54
## Clean CG
rm(cg)

sofa <- read.csv("~/nqf_caregivers/data/sofa.csv", header = T, stringsAsFactors = F)
#oasis <- read.csv("~/nqf_caregivers/data/oasis.csv", header = T, stringsAsFactors = F)
#saps <- read.csv("~/nqf_caregivers/data/saps.csv", header = T, stringsAsFactors = F)

colnames(sofa) <- toupper(colnames(sofa))

dat <- merge(dat, sofa, by = c("SUBJECT_ID", "HADM_ID", "ICUSTAY_ID"))
dim(dat)
## [1] 11575    61
## Clean environment
rm(sofa)

## Clean ethnicity to Black/White/Other
dat[(grepl("WHITE|PORTUGUESE", dat$ETHNICITY)),]$ETHNICITY <- "WHITE" 
dat[(grepl("ASIAN", dat$ETHNICITY)),]$ETHNICITY <- "OTHER" 
dat[(grepl("BLACK", dat$ETHNICITY)),]$ETHNICITY <- "BLACK" 
dat[(grepl("HISPANIC", dat$ETHNICITY)),]$ETHNICITY <- "OTHER"
dat[(grepl("MIDDLE|NATIVE|MULTI|DECLINED|UNABLE|OTHER|NOT", dat$ETHNICITY)),]$ETHNICITY <- "OTHER"

## Clean Marital Status to Married, Single, Widowed, Unknown
dat$MARITAL_STATUS[dat$MARITAL_STATUS == ""] <- "UNKNOWN (DEFAULT)"
dat$MARITAL_STATUS[dat$MARITAL_STATUS == "UNKNOWN (DEFAULT)"] <- "UNKNOWN"
dat$MARITAL_STATUS[dat$MARITAL_STATUS == "SEPARATED"] <- "SINGLE"
dat$MARITAL_STATUS[dat$MARITAL_STATUS == "DIVORCED"] <- "SINGLE"

## Clean admission data
dat$ADMISSION_TYPE[dat$ADMISSION_TYPE == "URGENT"] <- "EMERGENCY"

#write.csv(dat, file = "~/nqf_caregivers/data/nqf_dat.csv", row.names = F)

NQF Care Measure Check

prov <- provider_caremeasure_check(attending_check(dat))

prov <- expire_check(prov)

team <- team_caremeasure_check(attending_check(dat))

team <- expire_check(team)

Provider-Level Analysis

At this level, we will see if providers documented patient care preferences at least once in the first 48hrs of the hospital admission. Here, the clinician/patient interaction is the unit of analysis.

temp <- prov

Data Standardization and Factoring (for modeling)

Continuous data, Age and SOFA, will be standardized in the form:

\[z = \frac{x - \mu}{\sigma}\]

temp$AGE <- (temp$AGE - mean(temp$AGE))/sd(temp$AGE)
temp$SOFA <- (temp$SOFA - mean(temp$SOFA)/sd(temp$SOFA))

Baseline Model (Provider Random Effects)

gm_initial <- glmer(NQF ~ (1 | CGID),
                   data = temp, 
                   family = binomial, 
                   control = glmerControl(optimizer = "bobyqa"),
                   nAGQ = 10)

##  as.numeric(attr(summary(gm_initial)$varcor$CGID, "stddev"))

## View
summary(gm_initial)
## Generalized linear mixed model fit by maximum likelihood (Adaptive
##   Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]
##  Family: binomial  ( logit )
## Formula: NQF ~ (1 | CGID)
##    Data: temp
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##  13715.3  13730.0  -6855.7  13711.3    11157 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.2922 -0.8253  0.3867  0.7561  3.6611 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  CGID   (Intercept) 2.138    1.462   
## Number of obs: 11159, groups:  CGID, 493
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  0.16423    0.07617   2.156   0.0311 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjstats::icc(gm_initial)
## 
## Generalized linear mixed model
## 
## Family : binomial (logit)
## Formula: NQF ~ (1 | CGID)
## 
##   ICC (CGID): 0.3938

Model 1a (Patient Demographics)

  1. Gender
  2. Age
  3. Ethnicity
  4. Marrital Status
  5. Care Provider (Random)
gm_a <- glmer(NQF ~ GENDER +
                     AGE +
                     ETHNICITY +
                     MARITAL_STATUS +
                     (1 | CGID), 
                   data = temp, 
                   family = binomial, 
                   control = glmerControl(optimizer = "bobyqa"),
                   nAGQ = 10)


## View
summary(gm_a)
## Generalized linear mixed model fit by maximum likelihood (Adaptive
##   Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]
##  Family: binomial  ( logit )
## Formula: NQF ~ GENDER + AGE + ETHNICITY + MARITAL_STATUS + (1 | CGID)
##    Data: temp
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##  13472.3  13538.1  -6727.1  13454.3    11150 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.4389 -0.7877  0.3476  0.7307  4.1859 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  CGID   (Intercept) 2.112    1.453   
## Number of obs: 11159, groups:  CGID, 493
## 
## Fixed effects:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            0.22100    0.11608   1.904  0.05692 .  
## GENDERM               -0.33510    0.04934  -6.792 1.11e-11 ***
## AGE                    0.25396    0.02348  10.817  < 2e-16 ***
## ETHNICITYOTHER         0.03976    0.10762   0.369  0.71182    
## ETHNICITYWHITE        -0.02416    0.08113  -0.298  0.76585    
## MARITAL_STATUSSINGLE   0.38954    0.06319   6.164 7.08e-10 ***
## MARITAL_STATUSUNKNOWN -0.14376    0.12465  -1.153  0.24878    
## MARITAL_STATUSWIDOWED  0.17954    0.05818   3.086  0.00203 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                 (Intr) GENDER AGE    ETHNICITYO ETHNICITYW MARITAL_STATUSS
## GENDERM         -0.266                                                    
## AGE              0.089 -0.054                                             
## ETHNICITYOT     -0.495 -0.037 -0.051                                      
## ETHNICITYWH     -0.647 -0.064 -0.064  0.675                               
## MARITAL_STATUSS -0.302  0.248  0.020  0.093      0.095                    
## MARITAL_STATUSU -0.130  0.066 -0.077 -0.068      0.048      0.161         
## MARITAL_STATUSW -0.369  0.368 -0.177  0.101      0.096      0.432         
##                 MARITAL_STATUSU
## GENDERM                        
## AGE                            
## ETHNICITYOT                    
## ETHNICITYWH                    
## MARITAL_STATUSS                
## MARITAL_STATUSU                
## MARITAL_STATUSW  0.205
tab_model(gm_a)
  NQF
Predictors Odds Ratios CI p
(Intercept) 1.25 0.99 – 1.57 0.057
GENDERM 0.72 0.65 – 0.79 <0.001
AGE 1.29 1.23 – 1.35 <0.001
ETHNICITYOTHER 1.04 0.84 – 1.28 0.712
ETHNICITYWHITE 0.98 0.83 – 1.14 0.766
MARITAL_STATUSSINGLE 1.48 1.30 – 1.67 <0.001
MARITAL_STATUSUNKNOWN 0.87 0.68 – 1.11 0.249
MARITAL_STATUSWIDOWED 1.20 1.07 – 1.34 0.002
Random Effects
σ2 3.29
τ00 CGID 2.11
ICC CGID 0.39
Observations 11159
Marginal R2 / Conditional R2 0.024 / 0.406

Model 1b (Clinical Variables)

  1. SOFA
  2. Care Provider (Random)
gm_b <- glmer(NQF ~ SOFA +
                     (1 | CGID), 
                   data = temp, 
                   family = binomial, 
                   control = glmerControl(optimizer = "bobyqa"),
                   nAGQ = 10)

## View
summary(gm_b)
## Generalized linear mixed model fit by maximum likelihood (Adaptive
##   Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]
##  Family: binomial  ( logit )
## Formula: NQF ~ SOFA + (1 | CGID)
##    Data: temp
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##  13717.3  13739.3  -6855.7  13711.3    11156 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.2906 -0.8251  0.3866  0.7564  3.6627 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  CGID   (Intercept) 2.138    1.462   
## Number of obs: 11159, groups:  CGID, 493
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept) 0.1633086  0.0801375   2.038   0.0416 *
## SOFA        0.0002795  0.0075712   0.037   0.9706  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##      (Intr)
## SOFA -0.311
tab_model(gm_b)
  NQF
Predictors Odds Ratios CI p
(Intercept) 1.18 1.01 – 1.38 0.042
SOFA 1.00 0.99 – 1.02 0.971
Random Effects
σ2 3.29
τ00 CGID 2.14
ICC CGID 0.39
Observations 11159
Marginal R2 / Conditional R2 0.000 / 0.394

Model 2a (Demographics + ICU)

  1. Demographics (Model 1a)
  2. First Intensive Care Unit
  3. Care Provider (Random)
gm_2a <- glmer(NQF ~ GENDER +
                      AGE +
                      ETHNICITY +
                      MARITAL_STATUS +
                      FIRST_CAREUNIT +
                      (1 | CGID), 
                   data = temp,
                   family = binomial, 
                   control = glmerControl(optimizer = "bobyqa"),
                   nAGQ = 10)

## View
summary(gm_2a)
## Generalized linear mixed model fit by maximum likelihood (Adaptive
##   Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## NQF ~ GENDER + AGE + ETHNICITY + MARITAL_STATUS + FIRST_CAREUNIT +  
##     (1 | CGID)
##    Data: temp
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##  13425.1  13520.2  -6699.5  13399.1    11146 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3984 -0.7883  0.3440  0.7329  4.7920 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  CGID   (Intercept) 2.184    1.478   
## Number of obs: 11159, groups:  CGID, 493
## 
## Fixed effects:
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -0.089391   0.136182  -0.656 0.511562    
## GENDERM               -0.317199   0.049573  -6.399 1.57e-10 ***
## AGE                    0.259135   0.023635  10.964  < 2e-16 ***
## ETHNICITYOTHER         0.084372   0.108248   0.779 0.435723    
## ETHNICITYWHITE         0.006944   0.081463   0.085 0.932066    
## MARITAL_STATUSSINGLE   0.402595   0.063371   6.353 2.11e-10 ***
## MARITAL_STATUSUNKNOWN -0.189578   0.125578  -1.510 0.131135    
## MARITAL_STATUSWIDOWED  0.199230   0.058503   3.405 0.000660 ***
## FIRST_CAREUNITCSRU    -0.453809   0.171432  -2.647 0.008117 ** 
## FIRST_CAREUNITMICU     0.301187   0.078861   3.819 0.000134 ***
## FIRST_CAREUNITSICU     0.347727   0.116786   2.977 0.002906 ** 
## FIRST_CAREUNITTSICU    0.764958   0.142851   5.355 8.56e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                 (Intr) GENDER AGE    ETHNICITYO ETHNICITYW MARITAL_STATUSS
## GENDERM         -0.242                                                    
## AGE              0.044 -0.050                                             
## ETHNICITYOT     -0.455 -0.033 -0.045                                      
## ETHNICITYWH     -0.577 -0.061 -0.062  0.673                               
## MARITAL_STATUSS -0.272  0.246  0.022  0.096      0.097                    
## MARITAL_STATUSU -0.083  0.064 -0.078 -0.069      0.043      0.158         
## MARITAL_STATUSW -0.310  0.367 -0.176  0.103      0.098      0.431         
## FIRST_CAREUNITC -0.205 -0.031  0.002  0.011      0.014      0.000         
## FIRST_CAREUNITM -0.475  0.031  0.083  0.070      0.035      0.027         
## FIRST_CAREUNITS -0.386  0.033  0.014  0.026      0.043      0.015         
## FIRST_CAREUNITT -0.359  0.009  0.011  0.045      0.066      0.027         
##                 MARITAL_STATUSU MARITAL_STATUSW FIRST_CAREUNITC
## GENDERM                                                        
## AGE                                                            
## ETHNICITYOT                                                    
## ETHNICITYWH                                                    
## MARITAL_STATUSS                                                
## MARITAL_STATUSU                                                
## MARITAL_STATUSW  0.202                                         
## FIRST_CAREUNITC -0.031          -0.049                         
## FIRST_CAREUNITM -0.033          -0.010           0.300         
## FIRST_CAREUNITS -0.041          -0.018           0.290         
## FIRST_CAREUNITT -0.076           0.021           0.266         
##                 FIRST_CAREUNITM FIRST_CAREUNITS
## GENDERM                                        
## AGE                                            
## ETHNICITYOT                                    
## ETHNICITYWH                                    
## MARITAL_STATUSS                                
## MARITAL_STATUSU                                
## MARITAL_STATUSW                                
## FIRST_CAREUNITC                                
## FIRST_CAREUNITM                                
## FIRST_CAREUNITS  0.540                         
## FIRST_CAREUNITT  0.441           0.556
tab_model(gm_2a)
  NQF
Predictors Odds Ratios CI p
(Intercept) 0.91 0.70 – 1.19 0.512
GENDERM 0.73 0.66 – 0.80 <0.001
AGE 1.30 1.24 – 1.36 <0.001
ETHNICITYOTHER 1.09 0.88 – 1.35 0.436
ETHNICITYWHITE 1.01 0.86 – 1.18 0.932
MARITAL_STATUSSINGLE 1.50 1.32 – 1.69 <0.001
MARITAL_STATUSUNKNOWN 0.83 0.65 – 1.06 0.131
MARITAL_STATUSWIDOWED 1.22 1.09 – 1.37 0.001
FIRST_CAREUNITCSRU 0.64 0.45 – 0.89 0.008
FIRST_CAREUNITMICU 1.35 1.16 – 1.58 <0.001
FIRST_CAREUNITSICU 1.42 1.13 – 1.78 0.003
FIRST_CAREUNITTSICU 2.15 1.62 – 2.84 <0.001
Random Effects
σ2 3.29
τ00 CGID 2.18
ICC CGID 0.40
Observations 11159
Marginal R2 / Conditional R2 0.032 / 0.418

Model 2b (Clinical Variables + ICU)

  1. Clinical Variables (Model 1b)
  2. First Intensive Care Unit
  3. Care Provider (Random)
gm_2b <- glmer(NQF ~ SOFA +
                  FIRST_CAREUNIT +
                      (1 | CGID), 
                   data = temp,
                   family = binomial, 
                   control = glmerControl(optimizer = "bobyqa"),
                   nAGQ = 10)

## View
summary(gm_2b)
## Generalized linear mixed model fit by maximum likelihood (Adaptive
##   Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]
##  Family: binomial  ( logit )
## Formula: NQF ~ SOFA + FIRST_CAREUNIT + (1 | CGID)
##    Data: temp
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##  13673.1  13724.3  -6829.5  13659.1    11152 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3161 -0.8161  0.3780  0.7567  4.2014 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  CGID   (Intercept) 2.243    1.498   
## Number of obs: 11159, groups:  CGID, 493
## 
## Fixed effects:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         -0.077708   0.103960  -0.747 0.454771    
## SOFA                 0.003185   0.007625   0.418 0.676141    
## FIRST_CAREUNITCSRU  -0.466875   0.168642  -2.768 0.005633 ** 
## FIRST_CAREUNITMICU   0.241646   0.077318   3.125 0.001776 ** 
## FIRST_CAREUNITSICU   0.382926   0.115541   3.314 0.000919 ***
## FIRST_CAREUNITTSICU  0.734990   0.140761   5.222 1.77e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                 (Intr) SOFA   FIRST_CAREUNITC FIRST_CAREUNITM
## SOFA            -0.245                                       
## FIRST_CAREUNITC -0.270 -0.020                                
## FIRST_CAREUNITM -0.570 -0.018  0.302                         
## FIRST_CAREUNITS -0.474  0.051  0.290           0.536         
## FIRST_CAREUNITT -0.421  0.047  0.268           0.438         
##                 FIRST_CAREUNITS
## SOFA                           
## FIRST_CAREUNITC                
## FIRST_CAREUNITM                
## FIRST_CAREUNITS                
## FIRST_CAREUNITT  0.557
tab_model(gm_2b)
  NQF
Predictors Odds Ratios CI p
(Intercept) 0.93 0.75 – 1.13 0.455
SOFA 1.00 0.99 – 1.02 0.676
FIRST_CAREUNITCSRU 0.63 0.45 – 0.87 0.006
FIRST_CAREUNITMICU 1.27 1.09 – 1.48 0.002
FIRST_CAREUNITSICU 1.47 1.17 – 1.84 0.001
FIRST_CAREUNITTSICU 2.09 1.58 – 2.75 <0.001
Random Effects
σ2 3.29
τ00 CGID 2.24
ICC CGID 0.41
Observations 11159
Marginal R2 / Conditional R2 0.008 / 0.410

Model 3 (Demographics + Clinical Variables + ICU)

  1. Demographics (as in Model 1a)
  2. SOFA Score (As Model 1b)
  3. First Intensive Care Unit
  4. Care Provider (Random)
gm_icu <- glmer(NQF ~ 
                   GENDER +
                   AGE +
                   ETHNICITY +
                   MARITAL_STATUS +
                   SOFA +
                   FIRST_CAREUNIT +
                   (1 | CGID), 
                   data = temp,
                   family = binomial, 
                   control = glmerControl(optimizer = "bobyqa"),
                   nAGQ = 10)

## View
summary(gm_icu)
## Generalized linear mixed model fit by maximum likelihood (Adaptive
##   Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## NQF ~ GENDER + AGE + ETHNICITY + MARITAL_STATUS + SOFA + FIRST_CAREUNIT +  
##     (1 | CGID)
##    Data: temp
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##  13420.5  13523.0  -6696.3  13392.5    11145 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.2806 -0.7926  0.3433  0.7313  4.9852 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  CGID   (Intercept) 2.194    1.481   
## Number of obs: 11159, groups:  CGID, 493
## 
## Fixed effects:
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -0.158075   0.138990  -1.137 0.255410    
## GENDERM               -0.331264   0.049905  -6.638 3.18e-11 ***
## AGE                    0.263075   0.023705  11.098  < 2e-16 ***
## ETHNICITYOTHER         0.080285   0.108411   0.741 0.458960    
## ETHNICITYWHITE         0.014362   0.081614   0.176 0.860314    
## MARITAL_STATUSSINGLE   0.408120   0.063430   6.434 1.24e-10 ***
## MARITAL_STATUSUNKNOWN -0.179696   0.125682  -1.430 0.152785    
## MARITAL_STATUSWIDOWED  0.203522   0.058556   3.476 0.000510 ***
## SOFA                   0.020113   0.007848   2.563 0.010383 *  
## FIRST_CAREUNITCSRU    -0.462606   0.171437  -2.698 0.006967 ** 
## FIRST_CAREUNITMICU     0.297664   0.078919   3.772 0.000162 ***
## FIRST_CAREUNITSICU     0.362566   0.117035   3.098 0.001949 ** 
## FIRST_CAREUNITTSICU    0.782931   0.143072   5.472 4.44e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(gm_icu)
  NQF
Predictors Odds Ratios CI p
(Intercept) 0.85 0.65 – 1.12 0.255
GENDERM 0.72 0.65 – 0.79 <0.001
AGE 1.30 1.24 – 1.36 <0.001
ETHNICITYOTHER 1.08 0.88 – 1.34 0.459
ETHNICITYWHITE 1.01 0.86 – 1.19 0.860
MARITAL_STATUSSINGLE 1.50 1.33 – 1.70 <0.001
MARITAL_STATUSUNKNOWN 0.84 0.65 – 1.07 0.153
MARITAL_STATUSWIDOWED 1.23 1.09 – 1.37 0.001
SOFA 1.02 1.00 – 1.04 0.010
FIRST_CAREUNITCSRU 0.63 0.45 – 0.88 0.007
FIRST_CAREUNITMICU 1.35 1.15 – 1.57 <0.001
FIRST_CAREUNITSICU 1.44 1.14 – 1.81 0.002
FIRST_CAREUNITTSICU 2.19 1.65 – 2.90 <0.001
Random Effects
σ2 3.29
τ00 CGID 2.19
ICC CGID 0.40
Observations 11159
Marginal R2 / Conditional R2 0.033 / 0.420
par(mfrow=c(2,3))

rocplot(as.numeric(predict(gm_initial, type="response")), temp$NQF, col="blue", main = "Initial Model")
rocplot(as.numeric(predict(gm_a, type="response")), temp$NQF, col="blue", main = "Model 1a (Demographics)")
rocplot(as.numeric(predict(gm_b, type="response")), temp$NQF, col="blue", main = "Model 1b (Clinical Variables)")
rocplot(as.numeric(predict(gm_2a, type="response")), temp$NQF, col="blue", main = "Model 2a (Demographics + ICU)")
rocplot(as.numeric(predict(gm_2b, type="response")), temp$NQF, col="blue", main = "Model 2b (Clinical Variables + ICU)")
rocplot(as.numeric(predict(gm_icu, type="response")), temp$NQF, col="blue", main = "Model 3 (All Covariates)")

Generalized Linear Regression Models

Baseline Model (Provider Random Effects)

Not meaningful.

Model 1a (Patient Demographics)

  1. Gender
  2. Age
  3. Ethnicity
  4. Marrital Status
  5. Care Provider (Random)
gm_a <- glm(NQF ~ GENDER +
                     AGE +
                     ETHNICITY +
                     MARITAL_STATUS, 
                     data = temp,
                     family = binomial(link = "logit"))


## View
model_info(gm_a)
## Waiting for profiling to be done...
## $`Model Summary`
## 
## Call:
## glm(formula = NQF ~ GENDER + AGE + ETHNICITY + MARITAL_STATUS, 
##     family = binomial(link = "logit"), data = temp)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6955  -1.2224   0.8935   1.0738   1.5704  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            0.41451    0.07676   5.400 6.67e-08 ***
## GENDERM               -0.31305    0.04191  -7.470 8.04e-14 ***
## AGE                    0.25069    0.02009  12.476  < 2e-16 ***
## ETHNICITYOTHER        -0.00460    0.09117  -0.050 0.959760    
## ETHNICITYWHITE        -0.16072    0.06906  -2.327 0.019959 *  
## MARITAL_STATUSSINGLE   0.40458    0.05420   7.464 8.37e-14 ***
## MARITAL_STATUSUNKNOWN -0.39663    0.10611  -3.738 0.000185 ***
## MARITAL_STATUSWIDOWED  0.10679    0.04917   2.172 0.029868 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 15330  on 11158  degrees of freedom
## Residual deviance: 14980  on 11151  degrees of freedom
## AIC: 14996
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## $`OR Summary`
##                              OR     2.5 %    97.5 %
## (Intercept)           1.5136245 1.3026783 1.7601383
## GENDERM               0.7312139 0.6735309 0.7937934
## AGE                   1.2849074 1.2353570 1.3366010
## ETHNICITYOTHER        0.9954107 0.8324493 1.1901204
## ETHNICITYWHITE        0.8515325 0.7433614 0.9745490
## MARITAL_STATUSSINGLE  1.4986755 1.3478250 1.6669219
## MARITAL_STATUSUNKNOWN 0.6725828 0.5458913 0.8276527
## MARITAL_STATUSWIDOWED 1.1127017 1.0104664 1.2252801

Model 1b (Clinical Variables)

  1. SOFA
  2. Care Provider (Random)
gm_b <- glm(NQF ~ SOFA, 
                   data = temp, 
                   family = binomial(link = "logit"))

## View
model_info(gm_b)
## Waiting for profiling to be done...
## $`Model Summary`
## 
## Call:
## glm(formula = NQF ~ SOFA, family = binomial(link = "logit"), 
##     data = temp)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.276  -1.274   1.083   1.084   1.087  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  0.2272396  0.0285897   7.948 1.89e-15 ***
## SOFA        -0.0007278  0.0063508  -0.115    0.909    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 15330  on 11158  degrees of freedom
## Residual deviance: 15330  on 11157  degrees of freedom
## AIC: 15334
## 
## Number of Fisher Scoring iterations: 3
## 
## 
## $`OR Summary`
##                    OR     2.5 %   97.5 %
## (Intercept) 1.2551306 1.1867773 1.327527
## SOFA        0.9992725 0.9869175 1.011798

Model 2a (Demographics + ICU)

  1. Demographics (Model 1a)
  2. First Intensive Care Unit
  3. Care Provider (Random)
gm_2a <- glm(NQF ~ GENDER +
                      AGE +
                      ETHNICITY +
                      MARITAL_STATUS +
                      FIRST_CAREUNIT, 
                   data = temp,
                   family = binomial(link = "logit"))

## View
model_info(gm_2a)
## Waiting for profiling to be done...
## $`Model Summary`
## 
## Call:
## glm(formula = NQF ~ GENDER + AGE + ETHNICITY + MARITAL_STATUS + 
##     FIRST_CAREUNIT, family = binomial(link = "logit"), data = temp)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7632  -1.2201   0.8364   1.0560   1.7705  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            0.36198    0.09268   3.906 9.39e-05 ***
## GENDERM               -0.29432    0.04240  -6.941 3.90e-12 ***
## AGE                    0.25485    0.02026  12.577  < 2e-16 ***
## ETHNICITYOTHER         0.07258    0.09240   0.785  0.43217    
## ETHNICITYWHITE        -0.13145    0.06950  -1.891  0.05858 .  
## MARITAL_STATUSSINGLE   0.39380    0.05451   7.225 5.01e-13 ***
## MARITAL_STATUSUNKNOWN -0.29419    0.10809  -2.722  0.00649 ** 
## MARITAL_STATUSWIDOWED  0.15119    0.04982   3.034  0.00241 ** 
## FIRST_CAREUNITCSRU    -1.08414    0.12547  -8.641  < 2e-16 ***
## FIRST_CAREUNITMICU     0.13121    0.05697   2.303  0.02127 *  
## FIRST_CAREUNITSICU    -0.36046    0.07956  -4.531 5.88e-06 ***
## FIRST_CAREUNITTSICU   -0.28322    0.09372  -3.022  0.00251 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 15330  on 11158  degrees of freedom
## Residual deviance: 14804  on 11147  degrees of freedom
## AIC: 14828
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## $`OR Summary`
##                              OR     2.5 %    97.5 %
## (Intercept)           1.4361771 1.1980433 1.7229352
## GENDERM               0.7450390 0.6856020 0.8095905
## AGE                   1.2902742 1.2401053 1.3426299
## ETHNICITYOTHER        1.0752767 0.8970970 1.2887367
## ETHNICITYWHITE        0.8768212 0.7647764 1.0043495
## MARITAL_STATUSSINGLE  1.4826089 1.3325846 1.6500387
## MARITAL_STATUSUNKNOWN 0.7451372 0.6024862 0.9205865
## MARITAL_STATUSWIDOWED 1.1632135 1.0550064 1.2825623
## FIRST_CAREUNITCSRU    0.3381933 0.2636760 0.4313495
## FIRST_CAREUNITMICU    1.1402075 1.0195868 1.2747458
## FIRST_CAREUNITSICU    0.6973538 0.5965642 0.8149293
## FIRST_CAREUNITTSICU   0.7533563 0.6268141 0.9051693

Model 2b (Clinical Variables + ICU)

  1. Clinical Variables (Model 1b)
  2. First Intensive Care Unit
  3. Care Provider (Random)
gm_2b <- glm(NQF ~ SOFA +
                  FIRST_CAREUNIT, 
                   data = temp,
                   family = binomial(link = "logit"))

## View
model_info(gm_2b)
## Waiting for profiling to be done...
## $`Model Summary`
## 
## Call:
## glm(formula = NQF ~ SOFA + FIRST_CAREUNIT, family = binomial(link = "logit"), 
##     data = temp)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.338  -1.323   1.027   1.036   1.579  
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          0.273813   0.054575   5.017 5.24e-07 ***
## SOFA                -0.003461   0.006437  -0.538    0.591    
## FIRST_CAREUNITCSRU  -1.159929   0.123438  -9.397  < 2e-16 ***
## FIRST_CAREUNITMICU   0.090876   0.055739   1.630    0.103    
## FIRST_CAREUNITSICU  -0.346994   0.077920  -4.453 8.46e-06 ***
## FIRST_CAREUNITTSICU -0.357304   0.091384  -3.910 9.23e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 15330  on 11158  degrees of freedom
## Residual deviance: 15143  on 11153  degrees of freedom
## AIC: 15155
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## $`OR Summary`
##                            OR     2.5 %    97.5 %
## (Intercept)         1.3149687 1.1817847 1.4637357
## SOFA                0.9965445 0.9840557 1.0092069
## FIRST_CAREUNITCSRU  0.3135084 0.2453797 0.3982432
## FIRST_CAREUNITMICU  1.0951331 0.9816228 1.2213724
## FIRST_CAREUNITSICU  0.7068092 0.6066043 0.8233301
## FIRST_CAREUNITTSICU 0.6995600 0.5847083 0.8366620

Model 3 (Demographics + Clinical Variables + ICU)

  1. Demographics (as in Model 1a)
  2. SOFA Score (As Model 1b)
  3. First Intensive Care Unit
  4. Care Provider (Random)
gm_icu <- glm(NQF ~ 
              GENDER +
              AGE +
              ETHNICITY +
              MARITAL_STATUS +
              SOFA +
              FIRST_CAREUNIT, 
                   data = temp,
                   family = binomial(link = "logit"))

## View
model_info(gm_icu)
## Waiting for profiling to be done...
## $`Model Summary`
## 
## Call:
## glm(formula = NQF ~ GENDER + AGE + ETHNICITY + MARITAL_STATUS + 
##     SOFA + FIRST_CAREUNIT, family = binomial(link = "logit"), 
##     data = temp)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7742  -1.2190   0.8377   1.0578   1.7829  
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            0.323744   0.095265   3.398 0.000678 ***
## GENDERM               -0.302932   0.042703  -7.094 1.30e-12 ***
## AGE                    0.257538   0.020330  12.668  < 2e-16 ***
## ETHNICITYOTHER         0.070420   0.092457   0.762 0.446265    
## ETHNICITYWHITE        -0.126631   0.069594  -1.820 0.068826 .  
## MARITAL_STATUSSINGLE   0.396581   0.054539   7.272 3.55e-13 ***
## MARITAL_STATUSUNKNOWN -0.289381   0.108153  -2.676 0.007458 ** 
## MARITAL_STATUSWIDOWED  0.153350   0.049840   3.077 0.002092 ** 
## SOFA                   0.011589   0.006655   1.741 0.081608 .  
## FIRST_CAREUNITCSRU    -1.091802   0.125550  -8.696  < 2e-16 ***
## FIRST_CAREUNITMICU     0.128070   0.057006   2.247 0.024664 *  
## FIRST_CAREUNITSICU    -0.355293   0.079631  -4.462 8.13e-06 ***
## FIRST_CAREUNITTSICU   -0.276171   0.093780  -2.945 0.003231 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 15330  on 11158  degrees of freedom
## Residual deviance: 14801  on 11146  degrees of freedom
## AIC: 14827
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## $`OR Summary`
##                              OR     2.5 %    97.5 %
## (Intercept)           1.3822940 1.1472187 1.6666589
## GENDERM               0.7386491 0.6793220 0.8031131
## AGE                   1.2937404 1.2432756 1.3464150
## ETHNICITYOTHER        1.0729589 0.8950591 1.2861032
## ETHNICITYWHITE        0.8810590 0.7683379 1.0093910
## MARITAL_STATUSSINGLE  1.4867326 1.3362079 1.6547356
## MARITAL_STATUSUNKNOWN 0.7487268 0.6053150 0.9251427
## MARITAL_STATUSWIDOWED 1.1657328 1.0572550 1.2853853
## SOFA                  1.0116560 0.9985574 1.0249514
## FIRST_CAREUNITCSRU    0.3356111 0.2616212 0.4281265
## FIRST_CAREUNITMICU    1.1366331 1.0163182 1.2708378
## FIRST_CAREUNITSICU    0.7009680 0.5995752 0.8192669
## FIRST_CAREUNITTSICU   0.7586832 0.6311746 0.9116708
par(mfrow=c(2,3))

rocplot(as.numeric(predict(gm_a, type="response")), temp$NQF, col="blue", main = "Model 1a (Demographics)")
rocplot(as.numeric(predict(gm_b, type="response")), temp$NQF, col="blue", main = "Model 1b (Clinical Variables)")
rocplot(as.numeric(predict(gm_2a, type="response")), temp$NQF, col="blue", main = "Model 2a (Demographics + ICU)")
rocplot(as.numeric(predict(gm_2b, type="response")), temp$NQF, col="blue", main = "Model 2b (Clinical Variables + ICU)")
rocplot(as.numeric(predict(gm_icu, type="response")), temp$NQF, col="blue", main = "Model 3 (All Covariates)")




Admission-Level Care Team Analysis

For this analysis, we will look at the clinical care team. If any care provider documented the patient care preferences during the admission, then the entire care team will get credit for the documentation.

temp <- team

Data Standardization and Factoring (for modeling)

Continuous data, Age and SOFA, will be standardized in the form:

\[z = \frac{x - \mu}{\sigma}\]

temp$AGE <- (temp$AGE - mean(temp$AGE))/sd(temp$AGE)
temp$SOFA <- (temp$SOFA - mean(temp$SOFA)/sd(temp$SOFA))

Baseline Model (Provider Random Effects)

gm_initial <- glmer(NQF ~ (1 | CGID),
                   data = temp, 
                   family = binomial, 
                   control = glmerControl(optimizer = "bobyqa"),
                   nAGQ = 10)

## View
summary(gm_initial)
## Generalized linear mixed model fit by maximum likelihood (Adaptive
##   Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]
##  Family: binomial  ( logit )
## Formula: NQF ~ (1 | CGID)
##    Data: temp
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##  11907.8  11922.4  -5951.9  11903.8    11157 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.6384 -0.7102  0.4009  0.5699  2.2754 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  CGID   (Intercept) 2.011    1.418   
## Number of obs: 11159, groups:  CGID, 493
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.05472    0.07638   13.81   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjstats::icc(gm_initial)
## 
## Generalized linear mixed model
## 
## Family : binomial (logit)
## Formula: NQF ~ (1 | CGID)
## 
##   ICC (CGID): 0.3794

Model 1a (Patient Demographics)

  1. Gender
  2. Age
  3. Ethnicity
  4. Marrital Status
  5. Care Provider (Random)
gm_a <- glmer(NQF ~ GENDER +
                     AGE +
                     ETHNICITY +
                     MARITAL_STATUS +
                     (1 | CGID), 
                   data = temp, 
                   family = binomial, 
                   control = glmerControl(optimizer = "bobyqa"),
                   nAGQ = 10)


## View
summary(gm_a)
## Generalized linear mixed model fit by maximum likelihood (Adaptive
##   Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]
##  Family: binomial  ( logit )
## Formula: NQF ~ GENDER + AGE + ETHNICITY + MARITAL_STATUS + (1 | CGID)
##    Data: temp
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##  11663.7  11729.6  -5822.9  11645.7    11150 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.3725 -0.6454  0.3750  0.5813  2.7621 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  CGID   (Intercept) 1.937    1.392   
## Number of obs: 11159, groups:  CGID, 493
## 
## Fixed effects:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            1.06543    0.12256   8.693  < 2e-16 ***
## GENDERM               -0.36430    0.05429  -6.710 1.95e-11 ***
## AGE                    0.25305    0.02607   9.706  < 2e-16 ***
## ETHNICITYOTHER         0.48539    0.12337   3.934 8.34e-05 ***
## ETHNICITYWHITE         0.01746    0.09065   0.193  0.84727    
## MARITAL_STATUSSINGLE   0.50199    0.07124   7.047 1.83e-12 ***
## MARITAL_STATUSUNKNOWN -0.38472    0.12847  -2.995  0.00275 ** 
## MARITAL_STATUSWIDOWED  0.14126    0.06340   2.228  0.02588 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                 (Intr) GENDER AGE    ETHNICITYO ETHNICITYW MARITAL_STATUSS
## GENDERM         -0.275                                                    
## AGE              0.108 -0.061                                             
## ETHNICITYOT     -0.507 -0.050 -0.030                                      
## ETHNICITYWH     -0.676 -0.078 -0.067  0.665                               
## MARITAL_STATUSS -0.289  0.226  0.034  0.093      0.087                    
## MARITAL_STATUSU -0.133  0.068 -0.078 -0.081      0.053      0.150         
## MARITAL_STATUSW -0.373  0.361 -0.176  0.102      0.095      0.390         
##                 MARITAL_STATUSU
## GENDERM                        
## AGE                            
## ETHNICITYOT                    
## ETHNICITYWH                    
## MARITAL_STATUSS                
## MARITAL_STATUSU                
## MARITAL_STATUSW  0.202
tab_model(gm_a)
  NQF
Predictors Odds Ratios CI p
(Intercept) 2.90 2.28 – 3.69 <0.001
GENDERM 0.69 0.62 – 0.77 <0.001
AGE 1.29 1.22 – 1.36 <0.001
ETHNICITYOTHER 1.62 1.28 – 2.07 <0.001
ETHNICITYWHITE 1.02 0.85 – 1.22 0.847
MARITAL_STATUSSINGLE 1.65 1.44 – 1.90 <0.001
MARITAL_STATUSUNKNOWN 0.68 0.53 – 0.88 0.003
MARITAL_STATUSWIDOWED 1.15 1.02 – 1.30 0.026
Random Effects
σ2 3.29
τ00 CGID 1.94
ICC CGID 0.37
Observations 11159
Marginal R2 / Conditional R2 0.032 / 0.390

Model 1b (Clinical Variables)

  1. SOFA
  2. Care Provider (Random)
gm_b <- glmer(NQF ~ SOFA +
                     (1 | CGID), 
                   data = temp, 
                   family = binomial, 
                   control = glmerControl(optimizer = "bobyqa"),
                   nAGQ = 10)

## View
summary(gm_b)
## Generalized linear mixed model fit by maximum likelihood (Adaptive
##   Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]
##  Family: binomial  ( logit )
## Formula: NQF ~ SOFA + (1 | CGID)
##    Data: temp
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##  11898.9  11920.9  -5946.5  11892.9    11156 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.4794 -0.7124  0.3938  0.5783  2.4456 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  CGID   (Intercept) 2.006    1.416   
## Number of obs: 11159, groups:  CGID, 493
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) 0.964591   0.080949   11.92  < 2e-16 ***
## SOFA        0.027701   0.008446    3.28  0.00104 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##      (Intr)
## SOFA -0.334
tab_model(gm_b)
  NQF
Predictors Odds Ratios CI p
(Intercept) 2.62 2.24 – 3.07 <0.001
SOFA 1.03 1.01 – 1.05 0.001
Random Effects
σ2 3.29
τ00 CGID 2.01
ICC CGID 0.38
Observations 11159
Marginal R2 / Conditional R2 0.001 / 0.380

Model 2a (Demographics + ICU)

  1. Demographics (Model 1a)
  2. First Intensive Care Unit
  3. Care Provider (Random)
gm_2a <- glmer(NQF ~ GENDER +
                      AGE +
                      ETHNICITY +
                      MARITAL_STATUS +
                      FIRST_CAREUNIT +
                      (1 | CGID), 
                   data = temp,
                   family = binomial, 
                   control = glmerControl(optimizer = "bobyqa"),
                   nAGQ = 10)

## View
summary(gm_2a)
## Generalized linear mixed model fit by maximum likelihood (Adaptive
##   Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## NQF ~ GENDER + AGE + ETHNICITY + MARITAL_STATUS + FIRST_CAREUNIT +  
##     (1 | CGID)
##    Data: temp
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##  11620.3  11715.5  -5797.1  11594.3    11146 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.3780 -0.6342  0.3752  0.5795  3.1486 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  CGID   (Intercept) 1.8      1.342   
## Number of obs: 11159, groups:  CGID, 493
## 
## Fixed effects:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            0.97904    0.14253   6.869 6.47e-12 ***
## GENDERM               -0.34575    0.05451  -6.343 2.25e-10 ***
## AGE                    0.25758    0.02615   9.849  < 2e-16 ***
## ETHNICITYOTHER         0.53361    0.12383   4.309 1.64e-05 ***
## ETHNICITYWHITE         0.03406    0.09052   0.376  0.70675    
## MARITAL_STATUSSINGLE   0.51937    0.07140   7.275 3.48e-13 ***
## MARITAL_STATUSUNKNOWN -0.40106    0.12901  -3.109  0.00188 ** 
## MARITAL_STATUSWIDOWED  0.17425    0.06371   2.735  0.00624 ** 
## FIRST_CAREUNITCSRU    -0.76667    0.17108  -4.481 7.42e-06 ***
## FIRST_CAREUNITMICU     0.13239    0.08679   1.525  0.12718    
## FIRST_CAREUNITSICU    -0.21185    0.12372  -1.712  0.08683 .  
## FIRST_CAREUNITTSICU    0.32709    0.14833   2.205  0.02745 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                 (Intr) GENDER AGE    ETHNICITYO ETHNICITYW MARITAL_STATUSS
## GENDERM         -0.254                                                    
## AGE              0.071 -0.058                                             
## ETHNICITYOT     -0.466 -0.044 -0.020                                      
## ETHNICITYWH     -0.603 -0.076 -0.066  0.661                               
## MARITAL_STATUSS -0.262  0.226  0.036  0.099      0.091                    
## MARITAL_STATUSU -0.086  0.067 -0.078 -0.081      0.048      0.147         
## MARITAL_STATUSW -0.315  0.361 -0.176  0.105      0.098      0.390         
## FIRST_CAREUNITC -0.231 -0.043 -0.003  0.002      0.016     -0.010         
## FIRST_CAREUNITM -0.500  0.037  0.056  0.068      0.033      0.023         
## FIRST_CAREUNITS -0.391  0.034 -0.006  0.021      0.038      0.007         
## FIRST_CAREUNITT -0.364  0.009 -0.001  0.052      0.068      0.032         
##                 MARITAL_STATUSU MARITAL_STATUSW FIRST_CAREUNITC
## GENDERM                                                        
## AGE                                                            
## ETHNICITYOT                                                    
## ETHNICITYWH                                                    
## MARITAL_STATUSS                                                
## MARITAL_STATUSU                                                
## MARITAL_STATUSW  0.200                                         
## FIRST_CAREUNITC -0.037          -0.061                         
## FIRST_CAREUNITM -0.035          -0.009           0.351         
## FIRST_CAREUNITS -0.047          -0.025           0.350         
## FIRST_CAREUNITT -0.083           0.020           0.320         
##                 FIRST_CAREUNITM FIRST_CAREUNITS
## GENDERM                                        
## AGE                                            
## ETHNICITYOT                                    
## ETHNICITYWH                                    
## MARITAL_STATUSS                                
## MARITAL_STATUSU                                
## MARITAL_STATUSW                                
## FIRST_CAREUNITC                                
## FIRST_CAREUNITM                                
## FIRST_CAREUNITS  0.559                         
## FIRST_CAREUNITT  0.467           0.592
tab_model(gm_2a)
  NQF
Predictors Odds Ratios CI p
(Intercept) 2.66 2.01 – 3.52 <0.001
GENDERM 0.71 0.64 – 0.79 <0.001
AGE 1.29 1.23 – 1.36 <0.001
ETHNICITYOTHER 1.71 1.34 – 2.17 <0.001
ETHNICITYWHITE 1.03 0.87 – 1.24 0.707
MARITAL_STATUSSINGLE 1.68 1.46 – 1.93 <0.001
MARITAL_STATUSUNKNOWN 0.67 0.52 – 0.86 0.002
MARITAL_STATUSWIDOWED 1.19 1.05 – 1.35 0.006
FIRST_CAREUNITCSRU 0.46 0.33 – 0.65 <0.001
FIRST_CAREUNITMICU 1.14 0.96 – 1.35 0.127
FIRST_CAREUNITSICU 0.81 0.63 – 1.03 0.087
FIRST_CAREUNITTSICU 1.39 1.04 – 1.85 0.027
Random Effects
σ2 3.29
τ00 CGID 1.80
ICC CGID 0.35
Observations 11159
Marginal R2 / Conditional R2 0.040 / 0.380

Model 2b (Clinical Variables + ICU)

  1. Clinical Variables (Model 1b)
  2. First Intensive Care Unit
  3. Care Provider (Random)
gm_2b <- glmer(NQF ~ SOFA +
                  FIRST_CAREUNIT +
                      (1 | CGID), 
                   data = temp,
                   family = binomial, 
                   control = glmerControl(optimizer = "bobyqa"),
                   nAGQ = 10)

## View
summary(gm_2b)
## Generalized linear mixed model fit by maximum likelihood (Adaptive
##   Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]
##  Family: binomial  ( logit )
## Formula: NQF ~ SOFA + FIRST_CAREUNIT + (1 | CGID)
##    Data: temp
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##  11861.9  11913.1  -5923.9  11847.9    11152 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.5217 -0.6889  0.3914  0.5803  2.7499 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  CGID   (Intercept) 1.913    1.383   
## Number of obs: 11159, groups:  CGID, 493
## 
## Fixed effects:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          0.947851   0.105952   8.946  < 2e-16 ***
## SOFA                 0.028912   0.008497   3.403 0.000667 ***
## FIRST_CAREUNITCSRU  -0.800718   0.168384  -4.755 1.98e-06 ***
## FIRST_CAREUNITMICU   0.068061   0.085470   0.796 0.425849    
## FIRST_CAREUNITSICU  -0.136505   0.122717  -1.112 0.265985    
## FIRST_CAREUNITTSICU  0.308234   0.145968   2.112 0.034716 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                 (Intr) SOFA   FIRST_CAREUNITC FIRST_CAREUNITM
## SOFA            -0.266                                       
## FIRST_CAREUNITC -0.321 -0.017                                
## FIRST_CAREUNITM -0.623 -0.006  0.358                         
## FIRST_CAREUNITS -0.501  0.060  0.352           0.557         
## FIRST_CAREUNITT -0.438  0.051  0.324           0.467         
##                 FIRST_CAREUNITS
## SOFA                           
## FIRST_CAREUNITC                
## FIRST_CAREUNITM                
## FIRST_CAREUNITS                
## FIRST_CAREUNITT  0.596
tab_model(gm_2b)
  NQF
Predictors Odds Ratios CI p
(Intercept) 2.58 2.10 – 3.18 <0.001
SOFA 1.03 1.01 – 1.05 0.001
FIRST_CAREUNITCSRU 0.45 0.32 – 0.62 <0.001
FIRST_CAREUNITMICU 1.07 0.91 – 1.27 0.426
FIRST_CAREUNITSICU 0.87 0.69 – 1.11 0.266
FIRST_CAREUNITTSICU 1.36 1.02 – 1.81 0.035
Random Effects
σ2 3.29
τ00 CGID 1.91
ICC CGID 0.37
Observations 11159
Marginal R2 / Conditional R2 0.007 / 0.372

Model 3 (Demographics + Clinical Variables + ICU)

  1. Demographics (as in Model 1a)
  2. SOFA Score (As Model 1b)
  3. First Intensive Care Unit
  4. Care Provider (Random)
gm_icu <- glmer(NQF ~ 
                   GENDER +
                   AGE +
                   ETHNICITY +
                   MARITAL_STATUS +
                   SOFA +
                   FIRST_CAREUNIT +
                   (1 | CGID), 
                   data = temp,
                   family = binomial, 
                   control = glmerControl(optimizer = "bobyqa"),
                   nAGQ = 10)

## View
summary(gm_icu)
## Generalized linear mixed model fit by maximum likelihood (Adaptive
##   Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## NQF ~ GENDER + AGE + ETHNICITY + MARITAL_STATUS + SOFA + FIRST_CAREUNIT +  
##     (1 | CGID)
##    Data: temp
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##  11595.5  11698.0  -5783.7  11567.5    11145 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.4330 -0.6264  0.3722  0.5762  3.4517 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  CGID   (Intercept) 1.812    1.346   
## Number of obs: 11159, groups:  CGID, 493
## 
## Fixed effects:
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            0.825834   0.145765   5.666 1.47e-08 ***
## GENDERM               -0.374802   0.054877  -6.830 8.50e-12 ***
## AGE                    0.265987   0.026273  10.124  < 2e-16 ***
## ETHNICITYOTHER         0.531797   0.124263   4.280 1.87e-05 ***
## ETHNICITYWHITE         0.048033   0.090726   0.529  0.59651    
## MARITAL_STATUSSINGLE   0.531716   0.071543   7.432 1.07e-13 ***
## MARITAL_STATUSUNKNOWN -0.377833   0.129057  -2.928  0.00342 ** 
## MARITAL_STATUSWIDOWED  0.184446   0.063817   2.890  0.00385 ** 
## SOFA                   0.045084   0.008769   5.141 2.73e-07 ***
## FIRST_CAREUNITCSRU    -0.782858   0.171328  -4.569 4.89e-06 ***
## FIRST_CAREUNITMICU     0.128886   0.086892   1.483  0.13800    
## FIRST_CAREUNITSICU    -0.179204   0.124222  -1.443  0.14913    
## FIRST_CAREUNITTSICU    0.361549   0.148659   2.432  0.01501 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(gm_icu)
  NQF
Predictors Odds Ratios CI p
(Intercept) 2.28 1.72 – 3.04 <0.001
GENDERM 0.69 0.62 – 0.77 <0.001
AGE 1.30 1.24 – 1.37 <0.001
ETHNICITYOTHER 1.70 1.33 – 2.17 <0.001
ETHNICITYWHITE 1.05 0.88 – 1.25 0.597
MARITAL_STATUSSINGLE 1.70 1.48 – 1.96 <0.001
MARITAL_STATUSUNKNOWN 0.69 0.53 – 0.88 0.003
MARITAL_STATUSWIDOWED 1.20 1.06 – 1.36 0.004
SOFA 1.05 1.03 – 1.06 <0.001
FIRST_CAREUNITCSRU 0.46 0.33 – 0.64 <0.001
FIRST_CAREUNITMICU 1.14 0.96 – 1.35 0.138
FIRST_CAREUNITSICU 0.84 0.66 – 1.07 0.149
FIRST_CAREUNITTSICU 1.44 1.07 – 1.92 0.015
Random Effects
σ2 3.29
τ00 CGID 1.81
ICC CGID 0.36
Observations 11159
Marginal R2 / Conditional R2 0.043 / 0.383
par(mfrow=c(2,3))

rocplot(as.numeric(predict(gm_initial, type="response")), temp$NQF, col="blue", main = "Initial Model")
rocplot(as.numeric(predict(gm_a, type="response")), temp$NQF, col="blue", main = "Model 1a (Demographics)")
rocplot(as.numeric(predict(gm_b, type="response")), temp$NQF, col="blue", main = "Model 1b (Clinical Variables)")
rocplot(as.numeric(predict(gm_2a, type="response")), temp$NQF, col="blue", main = "Model 2a (Demographics + ICU)")
rocplot(as.numeric(predict(gm_2b, type="response")), temp$NQF, col="blue", main = "Model 2b (Clinical Variables + ICU)")
rocplot(as.numeric(predict(gm_icu, type="response")), temp$NQF, col="blue", main = "Model 3 (All Covariates)")

Generalized Linear Regression Models

Baseline Model (Provider Random Effects)

Not meaningful.

Model 1a (Patient Demographics)

  1. Gender
  2. Age
  3. Ethnicity
  4. Marrital Status
  5. Care Provider (Random)
gm_a <- glm(NQF ~ GENDER +
                     AGE +
                     ETHNICITY +
                     MARITAL_STATUS, 
                     data = temp,
                     family = binomial(link = "logit"))


## View
model_info(gm_a)
## Waiting for profiling to be done...
## $`Model Summary`
## 
## Call:
## glm(formula = NQF ~ GENDER + AGE + ETHNICITY + MARITAL_STATUS, 
##     family = binomial(link = "logit"), data = temp)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0524  -1.3558   0.7131   0.8514   1.3900  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            1.14273    0.08652  13.208  < 2e-16 ***
## GENDERM               -0.32540    0.04645  -7.006 2.46e-12 ***
## AGE                    0.25791    0.02235  11.542  < 2e-16 ***
## ETHNICITYOTHER         0.27144    0.10569   2.568   0.0102 *  
## ETHNICITYWHITE        -0.17328    0.07843  -2.209   0.0272 *  
## MARITAL_STATUSSINGLE   0.52593    0.06214   8.463  < 2e-16 ***
## MARITAL_STATUSUNKNOWN -0.68581    0.10836  -6.329 2.47e-10 ***
## MARITAL_STATUSWIDOWED  0.05847    0.05395   1.084   0.2785    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 13281  on 11158  degrees of freedom
## Residual deviance: 12914  on 11151  degrees of freedom
## AIC: 12930
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## $`OR Summary`
##                              OR     2.5 %    97.5 %
## (Intercept)           3.1353184 2.6496285 3.7197749
## GENDERM               0.7222378 0.6593390 0.7910238
## AGE                   1.2942246 1.2388622 1.3522800
## ETHNICITYOTHER        1.3118546 1.0664176 1.6140752
## ETHNICITYWHITE        0.8409056 0.7199808 0.9792482
## MARITAL_STATUSSINGLE  1.6920322 1.4988336 1.9123353
## MARITAL_STATUSUNKNOWN 0.5036813 0.4075010 0.6233374
## MARITAL_STATUSWIDOWED 1.0602117 0.9538886 1.1785708

Model 1b (Clinical Variables)

  1. SOFA
  2. Care Provider (Random)
gm_b <- glm(NQF ~ SOFA, 
                   data = temp, 
                   family = binomial(link = "logit"))

## View
model_info(gm_b)
## Waiting for profiling to be done...
## $`Model Summary`
## 
## Call:
## glm(formula = NQF ~ SOFA, family = binomial(link = "logit"), 
##     data = temp)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7808  -1.5470   0.8029   0.8254   0.8717  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) 0.826230   0.031302  26.395  < 2e-16 ***
## SOFA        0.032490   0.007181   4.525 6.05e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 13281  on 11158  degrees of freedom
## Residual deviance: 13261  on 11157  degrees of freedom
## AIC: 13265
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## $`OR Summary`
##                   OR    2.5 %   97.5 %
## (Intercept) 2.284689 2.149072 2.429646
## SOFA        1.033024 1.018642 1.047725

Model 2a (Demographics + ICU)

  1. Demographics (Model 1a)
  2. First Intensive Care Unit
  3. Care Provider (Random)
gm_2a <- glm(NQF ~ GENDER +
                      AGE +
                      ETHNICITY +
                      MARITAL_STATUS +
                      FIRST_CAREUNIT, 
                   data = temp,
                   family = binomial(link = "logit"))

## View
model_info(gm_2a)
## Waiting for profiling to be done...
## $`Model Summary`
## 
## Call:
## glm(formula = NQF ~ GENDER + AGE + ETHNICITY + MARITAL_STATUS + 
##     FIRST_CAREUNIT, family = binomial(link = "logit"), data = temp)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1567  -1.1270   0.6710   0.8155   1.5558  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            1.17362    0.10565  11.108  < 2e-16 ***
## GENDERM               -0.31896    0.04750  -6.716 1.87e-11 ***
## AGE                    0.26826    0.02277  11.779  < 2e-16 ***
## ETHNICITYOTHER         0.41483    0.10855   3.822 0.000133 ***
## ETHNICITYWHITE        -0.13291    0.07975  -1.667 0.095600 .  
## MARITAL_STATUSSINGLE   0.50508    0.06306   8.010 1.15e-15 ***
## MARITAL_STATUSUNKNOWN -0.50087    0.11204  -4.470 7.81e-06 ***
## MARITAL_STATUSWIDOWED  0.11838    0.05528   2.141 0.032235 *  
## FIRST_CAREUNITCSRU    -1.18681    0.12034  -9.863  < 2e-16 ***
## FIRST_CAREUNITMICU     0.13976    0.06504   2.149 0.031650 *  
## FIRST_CAREUNITSICU    -0.84086    0.08503  -9.889  < 2e-16 ***
## FIRST_CAREUNITTSICU   -0.66598    0.09906  -6.723 1.78e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 13281  on 11158  degrees of freedom
## Residual deviance: 12545  on 11147  degrees of freedom
## AIC: 12569
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## $`OR Summary`
##                              OR     2.5 %    97.5 %
## (Intercept)           3.2336696 2.6320563 3.9828340
## GENDERM               0.7269040 0.6622378 0.7977673
## AGE                   1.3076887 1.2507043 1.3675004
## ETHNICITYOTHER        1.5141176 1.2240603 1.8735154
## ETHNICITYWHITE        0.8755423 0.7477099 1.0222409
## MARITAL_STATUSSINGLE  1.6571136 1.4652722 1.8762073
## MARITAL_STATUSUNKNOWN 0.6060026 0.4868062 0.7554407
## MARITAL_STATUSWIDOWED 1.1256749 1.0101810 1.2546353
## FIRST_CAREUNITCSRU    0.3051929 0.2408667 0.3861290
## FIRST_CAREUNITMICU    1.1500031 1.0115715 1.3054206
## FIRST_CAREUNITSICU    0.4313385 0.3649816 0.5093978
## FIRST_CAREUNITTSICU   0.5137711 0.4231037 0.6239222

Model 2b (Clinical Variables + ICU)

  1. Clinical Variables (Model 1b)
  2. First Intensive Care Unit
  3. Care Provider (Random)
gm_2b <- glm(NQF ~ SOFA +
                  FIRST_CAREUNIT, 
                   data = temp,
                   family = binomial(link = "logit"))

## View
model_info(gm_2b)
## Waiting for profiling to be done...
## $`Model Summary`
## 
## Call:
## glm(formula = NQF ~ SOFA + FIRST_CAREUNIT, family = binomial(link = "logit"), 
##     data = temp)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.8415  -1.2707   0.7305   0.7639   1.3155  
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          0.997956   0.061864  16.131  < 2e-16 ***
## SOFA                 0.025667   0.007342   3.496 0.000473 ***
## FIRST_CAREUNITCSRU  -1.299375   0.117808 -11.030  < 2e-16 ***
## FIRST_CAREUNITMICU   0.076010   0.063712   1.193 0.232859    
## FIRST_CAREUNITSICU  -0.800513   0.083025  -9.642  < 2e-16 ***
## FIRST_CAREUNITTSICU -0.738141   0.096241  -7.670 1.72e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 13281  on 11158  degrees of freedom
## Residual deviance: 12892  on 11153  degrees of freedom
## AIC: 12904
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## $`OR Summary`
##                            OR     2.5 %    97.5 %
## (Intercept)         2.7127318 2.4051091 3.0653430
## SOFA                1.0259989 1.0113926 1.0409289
## FIRST_CAREUNITCSRU  0.2727022 0.2162857 0.3433094
## FIRST_CAREUNITMICU  1.0789731 0.9515195 1.2215327
## FIRST_CAREUNITSICU  0.4490984 0.3815144 0.5282975
## FIRST_CAREUNITTSICU 0.4780018 0.3958215 0.5772770

Model 3 (Demographics + Clinical Variables + ICU)

  1. Demographics (as in Model 1a)
  2. SOFA Score (As Model 1b)
  3. First Intensive Care Unit
  4. Care Provider (Random)
gm_icu <- glm(NQF ~ 
              GENDER +
              AGE +
              ETHNICITY +
              MARITAL_STATUS +
              SOFA +
              FIRST_CAREUNIT, 
                   data = temp,
                   family = binomial(link = "logit"))

## View
model_info(gm_icu)
## Waiting for profiling to be done...
## $`Model Summary`
## 
## Call:
## glm(formula = NQF ~ GENDER + AGE + ETHNICITY + MARITAL_STATUS + 
##     SOFA + FIRST_CAREUNIT, family = binomial(link = "logit"), 
##     data = temp)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2506  -1.1409   0.6676   0.8177   1.5492  
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            1.037661   0.108429   9.570  < 2e-16 ***
## GENDERM               -0.348734   0.047881  -7.283 3.26e-13 ***
## AGE                    0.278813   0.022917  12.166  < 2e-16 ***
## ETHNICITYOTHER         0.411646   0.108942   3.779 0.000158 ***
## ETHNICITYWHITE        -0.118724   0.079960  -1.485 0.137599    
## MARITAL_STATUSSINGLE   0.517150   0.063203   8.182 2.78e-16 ***
## MARITAL_STATUSUNKNOWN -0.482863   0.112254  -4.302 1.70e-05 ***
## MARITAL_STATUSWIDOWED  0.127479   0.055333   2.304 0.021231 *  
## SOFA                   0.042354   0.007607   5.568 2.58e-08 ***
## FIRST_CAREUNITCSRU    -1.218994   0.120658 -10.103  < 2e-16 ***
## FIRST_CAREUNITMICU     0.129467   0.065185   1.986 0.047016 *  
## FIRST_CAREUNITSICU    -0.824054   0.085209  -9.671  < 2e-16 ***
## FIRST_CAREUNITTSICU   -0.644605   0.099133  -6.502 7.90e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 13281  on 11158  degrees of freedom
## Residual deviance: 12514  on 11146  degrees of freedom
## AIC: 12540
## 
## Number of Fisher Scoring iterations: 4
## 
## 
## $`OR Summary`
##                              OR     2.5 %    97.5 %
## (Intercept)           2.8226063 2.2847918 3.4951818
## GENDERM               0.7055805 0.6423184 0.7749432
## AGE                   1.3215604 1.2636228 1.3824017
## ETHNICITYOTHER        1.5093001 1.2192309 1.8690038
## ETHNICITYWHITE        0.8880526 0.7580906 1.0372807
## MARITAL_STATUSSINGLE  1.6772412 1.4826441 1.8995524
## MARITAL_STATUSUNKNOWN 0.6170144 0.4954494 0.7694974
## MARITAL_STATUSWIDOWED 1.1359613 1.0193093 1.2662317
## SOFA                  1.0432640 1.0278801 1.0589950
## FIRST_CAREUNITCSRU    0.2955274 0.2330900 0.3741354
## FIRST_CAREUNITMICU    1.1382211 1.0009305 1.2924047
## FIRST_CAREUNITSICU    0.4386497 0.3710425 0.5182143
## FIRST_CAREUNITTSICU   0.5248698 0.4321841 0.6374953
par(mfrow=c(2,3))

rocplot(as.numeric(predict(gm_a, type="response")), temp$NQF, col="blue", main = "Model 1a (Demographics)")
rocplot(as.numeric(predict(gm_b, type="response")), temp$NQF, col="blue", main = "Model 1b (Clinical Variables)")
rocplot(as.numeric(predict(gm_2a, type="response")), temp$NQF, col="blue", main = "Model 2a (Demographics + ICU)")
rocplot(as.numeric(predict(gm_2b, type="response")), temp$NQF, col="blue", main = "Model 2b (Clinical Variables + ICU)")
rocplot(as.numeric(predict(gm_icu, type="response")), temp$NQF, col="blue", main = "Model 3 (All Covariates)")

References

  1. Vincent JL, de Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM, Sprung CL, Colardyn F, Blecher S. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med 1998 Nov;26(11):1793-800. PMID 9824069.

  2. Moreno R, Vincent JL, Matos R, Mendonça A, Cantraine F, Thijs L, Takala J, Sprung C, Antonelli M, Bruining H, Willatts S. The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Working Group on Sepsis related Problems of the ESICM. Intensive Care Med 1999 Jul;25(7):686-96. PMID 10470572.

  3. Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57, 289–300.