Radar Plots
op <- par(no.readonly = TRUE)
library(fmsb)
par(mfrow = c(1,2),xpd = TRUE,pty = "s",mar = c(1,1,1,1))
mNames <- names(cp$cpuElapsedTimes)
classRanks <- c(pr$minMaxMetrics$Pearson[2],pr$minMaxMetrics$RMSE[1],pr$minMaxMetrics$Spearman[2],pr$minMaxMetrics$MAE[1],min(cp$cpuElapsedTimes))
classRanks <- rbind(classRanks,c(0,pr$minMaxMetrics$RMSE[2],0,pr$minMaxMetrics$MAE[2],max(cp$cpuElapsedTimes)))
classRanks <- as.data.frame(rbind(classRanks,cbind(t(pr$metrics[c("Pearson","RMSE","Spearman","MAE"),mNames]),cp$cpuElapsedTimes)))
colnames(classRanks) <- c("Pearson","RMSE","Spearman","MAE","CPU")
classRanks$RMSE <- -classRanks$RMSE
classRanks$MAE <- -classRanks$MAE
classRanks$CPU <- -classRanks$CPU
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.1), rgb(0.0,1.0,0.0,0.1) , rgb(0.0,0.0,1.0,0.1),rgb(1.0,1.0,0.0,0.1), rgb(0.0,1.0,1.0,0.1) , rgb(1.0,0.0,1.0,0.1) )
radarchart(classRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.6 ,title = "Prediction Model")
legend("topleft",legend = rownames(classRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)
filnames <- c("eBSWiMS","LASSO","RF.ref","F-Test","Kendall","mRMR")
filterRanks <- c(pr$minMaxMetrics$Pearson[2],pr$minMaxMetrics$RMSE[1],pr$minMaxMetrics$Spearman[2],pr$minMaxMetrics$MAE[1],max(cp$jaccard),min(cp$featsize));
filterRanks <- rbind(filterRanks,c(0,pr$minMaxMetrics$RMSE[2],0,pr$minMaxMetrics$MAE[2],0,max(cp$featsize)));
filterRanks <- as.data.frame(rbind(filterRanks,cbind(t(pr$metrics_filter[c("Pearson","RMSE","Spearman","MAE"),filnames]),cp$jaccard[filnames],cp$featsize[filnames])));
colnames(filterRanks) <- c("Pearson","RMSE","Spearman","MAE","Jaccard","SIZE")
filterRanks$RMSE <- -filterRanks$RMSE
filterRanks$MAE <- -filterRanks$MAE
filterRanks$SIZE <- -filterRanks$SIZE
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0),rgb(1.0,0.0,1.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.1), rgb(0.0,1.0,0.0,0.1) , rgb(0.0,0.0,1.0,0.1),rgb(1.0,1.0,0.0,0.1), rgb(0.0,1.0,1.0,0.1), rgb(1.0,0.0,1.0,0.1) )
radarchart(filterRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.6,title = "Filter Method" )
legend("topleft",legend = rownames(filterRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)

par(mfrow = c(1,1))
par(op)
Features Analysis
pander::pander(summary(BSWiMSMODEL),caption = "Model",round = 3)
coefficients:
Table continues below
| S_CC_GLCM_4_Inertia |
-1.958 |
-2.774 |
-1.958 |
-1.143 |
| S_CC_FRACTAL_ICDF_0.05 |
0.01417 |
0.008142 |
0.01417 |
0.0202 |
| S_CC_FRACTAL_Mean |
0.0273 |
0.01556 |
0.0273 |
0.03903 |
| S_CC_GLCM_2_Inertia |
-2.284 |
-3.296 |
-2.284 |
-1.273 |
| D_CC_LH_3_ICDF_0.99 |
-0.6938 |
-1.002 |
-0.6938 |
-0.3855 |
| S_CC_FRACTAL_ICDF_0.95 |
0.05027 |
0.02777 |
0.05027 |
0.07276 |
| S_CC_FRACTAL_ICDF_0.75 |
0.02811 |
0.01503 |
0.02811 |
0.04118 |
| D_CC_HL_4_ICDF_0.999 |
-0.07754 |
-0.1154 |
-0.07754 |
-0.03971 |
| S_CC_HH_4_ICDF_0.95 |
-0.05052 |
-0.07535 |
-0.05052 |
-0.0257 |
| S_CC_GLCM_4_DiffMoment |
3.411 |
1.588 |
3.411 |
5.234 |
| S_CC_LH_2_z_Mean |
-11.26 |
-17.39 |
-11.26 |
-5.133 |
| D_CC_LSTD_Entropy |
-4.096 |
-6.365 |
-4.096 |
-1.827 |
| S_CC_HL_3_ICDF_0.75 |
-0.02054 |
-0.03196 |
-0.02054 |
-0.009117 |
| D_CC_LH_3_ICDF_0.999 |
-0.003321 |
-0.005182 |
-0.003321 |
-0.001461 |
| S_CC_LH_2_Mean |
-0.0762 |
-0.1225 |
-0.0762 |
-0.02993 |
Table continues below
| S_CC_GLCM_4_Inertia |
2684 |
2152 |
1573 |
0.3921 |
1.245e-06 |
| S_CC_FRACTAL_ICDF_0.05 |
2575 |
2166 |
1606 |
0.2278 |
2.035e-06 |
| S_CC_FRACTAL_Mean |
2473 |
2144 |
1597 |
0.5211 |
2.576e-06 |
| S_CC_GLCM_2_Inertia |
2772 |
2144 |
1624 |
0.4085 |
4.82e-06 |
| D_CC_LH_3_ICDF_0.99 |
2443 |
2152 |
1632 |
0.2151 |
5.164e-06 |
| S_CC_FRACTAL_ICDF_0.95 |
2422 |
2144 |
1634 |
0.4366 |
5.949e-06 |
| S_CC_FRACTAL_ICDF_0.75 |
2483 |
2144 |
1667 |
0.4366 |
1.254e-05 |
| D_CC_HL_4_ICDF_0.999 |
2750 |
2052 |
1632 |
0.1199 |
2.944e-05 |
| S_CC_HH_4_ICDF_0.95 |
2745 |
2148 |
1715 |
0.3164 |
3.325e-05 |
| S_CC_GLCM_4_DiffMoment |
2813 |
2212 |
1831 |
0.3052 |
0.0001227 |
| S_CC_LH_2_z_Mean |
2629 |
2427 |
2019 |
0.2207 |
0.0001582 |
| D_CC_LSTD_Entropy |
2828 |
2382 |
1994 |
0.2042 |
0.0002013 |
| S_CC_HL_3_ICDF_0.75 |
2734 |
2226 |
1868 |
0.2732 |
0.000212 |
| D_CC_LH_3_ICDF_0.999 |
2503 |
2502 |
2105 |
0.2019 |
0.0002338 |
| S_CC_LH_2_Mean |
2586 |
2340 |
2018 |
0.1362 |
0.0006241 |
| S_CC_GLCM_4_Inertia |
2.232e-06 |
0.0005379 |
0.0002089 |
0.1958 |
| S_CC_FRACTAL_ICDF_0.05 |
2.361e-05 |
0.03322 |
0.003642 |
0.1752 |
| S_CC_FRACTAL_Mean |
1.765e-05 |
6.263e-06 |
0.0001584 |
0.2061 |
| S_CC_GLCM_2_Inertia |
1.546e-06 |
0.0003834 |
0.0001036 |
0.1134 |
| D_CC_LH_3_ICDF_0.99 |
8.179e-05 |
0.03241 |
0.006667 |
1.278 |
| S_CC_FRACTAL_ICDF_0.95 |
1.665e-05 |
0.0001516 |
0.0009588 |
0.2061 |
| S_CC_FRACTAL_ICDF_0.75 |
3.53e-05 |
0.0001516 |
0.0002721 |
0.1855 |
| D_CC_HL_4_ICDF_0.999 |
0.0006527 |
0.1671 |
0.0131 |
1.278 |
| S_CC_HH_4_ICDF_0.95 |
6.923e-06 |
0.005025 |
0.001306 |
0.1546 |
| S_CC_GLCM_4_DiffMoment |
0.0001297 |
0.00583 |
0.002947 |
0.03092 |
| S_CC_LH_2_z_Mean |
0.005981 |
0.04028 |
0.03281 |
0.03092 |
| D_CC_LSTD_Entropy |
0.0003903 |
0.0533 |
0.01385 |
0.04122 |
| S_CC_HL_3_ICDF_0.75 |
0.0003362 |
0.0103 |
0.006352 |
0.05153 |
| D_CC_LH_3_ICDF_0.999 |
0.001863 |
0.04326 |
0.02312 |
0.03092 |
| S_CC_LH_2_Mean |
0.005942 |
0.1464 |
0.03999 |
0.03092 |
MSE: 1479
R2: 0.5231
bootstrap:
topFeat <- min(ncol(BSWiMSMODEL$bagging$formulaNetwork),30);
shortformulaNetwork <- BSWiMSMODEL$bagging$formulaNetwork[1:topFeat,1:topFeat]
validf <- diag(shortformulaNetwork) > 0.1
gplots::heatmap.2(log(shortformulaNetwork[validf,validf]+1),trace="none",mar = c(10,10),main = "B:SWiMS Formula Network",cexRow = 0.65,cexCol = 0.65)

rm <- rowMeans(cp$featureSelectionFrequency[,c("eBSWiMS","LASSO","RPART","RF.ref","W-Test","Kendall","mRMR")])
selFrequency <- cp$featureSelectionFrequency[rm > 0.10,]
gplots::heatmap.2(selFrequency,trace = "none",mar = c(10,10),main = "Features",cexRow = 0.6)

hm <- heatMaps(Outcome = theOutcome,data = theData[,c(theOutcome,rownames(selFrequency))],title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.25,cexCol = 0.65,srtCol = 45)

vlist <- rownames(selFrequency)
vlist <- cbind(vlist,vlist)
univ <- univariateRankVariables(variableList = vlist,formula = paste(theOutcome,"~1"),Outcome = theOutcome,data = theData,type = "LM",rankingTest = "Ztest",uniType = "Regression")[,c("cohortMean","cohortStd","kendall.r","kendall.p")]
cnames <- colnames(univ);
univ <- cbind(univ,rm[rownames(univ)])
colnames(univ) <- c(cnames,"Frequency")
univ <- univ[order(-univ[,5]),]
pander::pander(univ[1:topFeat,],caption = "Features",round = 4)
Features (continued below)
| D_CC_LH_3_ICDF_0.99 |
35.97 |
31.92 |
-0.3089 |
2e-04 |
| S_CC_FRACTAL_ICDF_0.95 |
71.32 |
70.92 |
0.3296 |
0 |
| S_CC_FRACTAL_Mean |
152.2 |
138.7 |
0.3368 |
0 |
| D_CC_LH_3_ICDF_0.999 |
87.35 |
76.42 |
-0.2566 |
0.0016 |
| S_CC_LH_2_Mean |
0.929 |
3.779 |
-0.2636 |
0.0011 |
| S_CC_FRACTAL_ICDF_0.75 |
111.4 |
110.5 |
0.3356 |
0 |
| D_CC_LH_3_ICDF_0.001 |
77.06 |
76.95 |
-0.2259 |
0.0054 |
| D_CC_HL_4_ICDF_0.999 |
222.5 |
259.7 |
-0.1874 |
0.021 |
| S_CC_GLCM_4_Inertia |
-0.2624 |
1.877 |
-0.2451 |
0.0025 |
| D_CC_HL_3_ICDF_0.99 |
46.15 |
43.31 |
-0.2681 |
0.001 |
| S_CC_FRACTAL_ICDF_0.05 |
251.7 |
223.9 |
0.2577 |
0.0015 |
| D_CC_HH_4_CDF_g2s |
0.009 |
0.0076 |
-0.2097 |
0.0097 |
| D_CC_LH_3_ICDF_0.01 |
33.54 |
27.6 |
-0.2219 |
0.0065 |
| S_CC_FRACTAL_Entropy |
-0.1819 |
0.333 |
-0.1903 |
0.0189 |
| S_CC_HL_4_ICDF_0.01 |
123.8 |
323.5 |
0.2835 |
5e-04 |
| D_CC_LH_4_ICDF_0.99 |
90.27 |
98.4 |
-0.2606 |
0.0013 |
| S_CC_LH_2_z_Mean |
0.0102 |
0.0334 |
-0.241 |
0.0029 |
| D_CC_LH_3_ICDF_0.99 |
0.7819 |
| S_CC_FRACTAL_ICDF_0.95 |
0.6352 |
| S_CC_FRACTAL_Mean |
0.5638 |
| D_CC_LH_3_ICDF_0.999 |
0.5267 |
| S_CC_LH_2_Mean |
0.5 |
| S_CC_FRACTAL_ICDF_0.75 |
0.4819 |
| D_CC_LH_3_ICDF_0.001 |
0.4533 |
| D_CC_HL_4_ICDF_0.999 |
0.4219 |
| S_CC_GLCM_4_Inertia |
0.3838 |
| D_CC_HL_3_ICDF_0.99 |
0.3752 |
| S_CC_FRACTAL_ICDF_0.05 |
0.341 |
| D_CC_HH_4_CDF_g2s |
0.2981 |
| D_CC_LH_3_ICDF_0.01 |
0.281 |
| S_CC_FRACTAL_Entropy |
0.2581 |
| S_CC_HL_4_ICDF_0.01 |
0.2467 |
| D_CC_LH_4_ICDF_0.99 |
0.2448 |
| S_CC_LH_2_z_Mean |
0.2352 |