Discussion week1

Linear algebra text, Chapters SLE, V, M

Fundamentals of Computational Mathematics

CUNY MSDS DATA 605, Fall 2018

Rose Koh

08/30/2018

Section Matrix Inverses and Systems of Linear Equations

# reformulate the linear system as a vector equality with a matrix-vector product (Theorem SLEMM)
# The system Ax = b

A <- matrix(c(1,-1,2,1,0,-2,2,-1,-1), 3, byrow=T)
b <- matrix(c(5,-8,-6), nrow=3, ncol=1)
print(A)
##      [,1] [,2] [,3]
## [1,]    1   -1    2
## [2,]    1    0   -2
## [3,]    2   -1   -1
print(b)
##      [,1]
## [1,]    5
## [2,]   -8
## [3,]   -6
# According to Theorem SNCM, if A is non-singular than the unique solution will be given by A inverse b.
library(matlib) # This defines: inv(), Inverse(); the standard R function for matrix inverse is solve()

det(A) != 0 # det(A) != 0, so inverse exists
## [1] TRUE
A.inv <- inv(A) # Only non-singular matrices have an inverse.
print(A.inv)
##      [,1] [,2] [,3]
## [1,]    2    3   -2
## [2,]    3    5   -4
## [3,]    1    1   -1
unique.solution <- A.inv%*%b # The unique solution is A inverse %*% b
print(unique.solution)
##      [,1]
## [1,]   -2
## [2,]   -1
## [3,]    3
  • reference