## Overall poverty Persistent poverty Total population (000s)
## Min. : 9.60 Min. : 2.900 Min. : 330823
## 1st Qu.:13.82 1st Qu.: 7.375 1st Qu.: 2073586
## Median :16.30 Median : 9.950 Median : 5659715
## Mean :16.76 Mean :10.294 Mean :16395592
## 3rd Qu.:20.35 3rd Qu.:13.150 3rd Qu.:14054856
## Max. :25.40 Max. :19.300 Max. :81197537
## NA's :1
##
## Pearson's product-moment correlation
##
## data: Persistent poverty and Overall poverty
## t = 10.319, df = 30, p-value = 2.191e-11
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7725237 0.9418821
## sample estimates:
## cor
## 0.8832837
##
## Pearson's product-moment correlation
##
## data: Overall poverty and Total population (000s)
## t = 0.38284, df = 29, p-value = 0.7046
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2907321 0.4148299
## sample estimates:
## cor
## 0.07091338
##
## Pearson's product-moment correlation
##
## data: Persistent poverty and Total population (000s)
## t = 0.58897, df = 29, p-value = 0.5604
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2554602 0.4458840
## sample estimates:
## cor
## 0.1087213
##
## Call:
## betareg(formula = `Persistent poverty` ~ `Overall poverty` + `Total population (000s)`,
## data = tabela1_tran)
##
## Standardized weighted residuals 2:
## Min 1Q Median 3Q Max
## -2.5996 -0.6237 0.2707 0.6812 1.7994
##
## Coefficients (mean model with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.705e+00 1.674e-01 -22.132 <2e-16 ***
## `Overall poverty` 8.717e+00 8.973e-01 9.715 <2e-16 ***
## `Total population (000s)` 1.503e-09 1.617e-09 0.929 0.353
##
## Phi coefficients (precision model with identity link):
## Estimate Std. Error z value Pr(>|z|)
## (phi) 251.27 63.87 3.934 8.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Type of estimator: ML (maximum likelihood)
## Log-likelihood: 79.97 on 4 Df
## Pseudo R-squared: 0.7436
## Number of iterations: 222 (BFGS) + 5 (Fisher scoring)
shapiro.test(modelo_beta$residuals)
##
## Shapiro-Wilk normality test
##
## data: modelo_beta$residuals
## W = 0.97688, p-value = 0.7217
\(H_0:\) normal
\(H_1:\) nao normal
p-valor = 0.72, nao rejeito \(H_0\), ou seja os residuos sao normais.