Bring a small dataset of bridges into R as a dataframe and call a subset of that dataframe.

Lets begin by bringing the data into R using url() and read.csv() and checking out how to top five rows look.

bridgedata <- read.csv(url('https://archive.ics.uci.edu/ml/machine-learning-databases/bridges/bridges.data.version1'))
bridgedf <- as.data.frame(bridgedata)
names(bridgedf) = c("ID","River","StateNum","YearBuilt","Purpose","Length","Lanes","Clear","DeckType","Material","Span","Rel","Type")
head(bridgedf,5)
##   ID River StateNum YearBuilt  Purpose Length Lanes Clear DeckType
## 1 E2     A       25      1819  HIGHWAY   1037     2     N  THROUGH
## 2 E3     A       39      1829 AQUEDUCT      ?     1     N  THROUGH
## 3 E5     A       29      1837  HIGHWAY   1000     2     N  THROUGH
## 4 E6     M       23      1838  HIGHWAY      ?     2     N  THROUGH
## 5 E7     A       27      1840  HIGHWAY    990     2     N  THROUGH
##   Material   Span Rel Type
## 1     WOOD  SHORT   S WOOD
## 2     WOOD      ?   S WOOD
## 3     WOOD  SHORT   S WOOD
## 4     WOOD      ?   S WOOD
## 5     WOOD MEDIUM   S WOOD

Summarizing the data with summary() to help get familiar with the df.

summary(bridgedf)
##        ID      River     StateNum    YearBuilt        Purpose  
##  E10    :  1   A:49   28     : 5   Min.   :1819   AQUEDUCT: 4  
##  E100   :  1   M:40   39     : 5   1st Qu.:1884   HIGHWAY :70  
##  E101   :  1   O:15   25     : 4   Median :1903   RR      :32  
##  E102   :  1   Y: 3   27     : 4   Mean   :1906   WALK    : 1  
##  E103   :  1          29     : 4   3rd Qu.:1928                
##  E105   :  1          1      : 3   Max.   :1986                
##  (Other):101          (Other):82                               
##      Length   Lanes  Clear     DeckType   Material      Span     Rel    
##  ?      :26   ?:16   ?: 2   ?      : 6   ?    : 2   ?     :16   ?  : 5  
##  1000   :10   1: 4   G:80   DECK   :15   IRON :11   LONG  :30   F  :58  
##  1200   : 5   2:60   N:25   THROUGH:86   STEEL:79   MEDIUM:53   S  :29  
##  1500   : 2   4:23                       WOOD :15   SHORT : 8   S-F:15  
##  2000   : 2   6: 4                                                      
##  2300   : 2                                                             
##  (Other):60                                                             
##        Type   
##  SIMPLE-T:44  
##  WOOD    :15  
##  ARCH    :13  
##  CANTILEV:11  
##  SUSPEN  :11  
##  CONT-T  :10  
##  (Other) : 3

Select for a subset of the dataframe where all bridges have a length greater than 1500 and returns columns for StateNum, Length, Pupose, and Material

sublongbr <- subset(bridgedf, as.numeric(as.character(Length)) > 1500, select = c(StateNum, Length, Purpose, Material))
## Warning in eval(e, x, parent.frame()): NAs introduced by coercion
sublongbr
##     StateNum Length Purpose Material
## 31        41   4558      RR    STEEL
## 41         9   2367 HIGHWAY    STEEL
## 44        37   4000      RR    STEEL
## 45        14   2264      RR    STEEL
## 46        15   2000      RR    STEEL
## 48        38   2000 HIGHWAY    STEEL
## 50        34   1850 HIGHWAY    STEEL
## 52        35   3000      RR    STEEL
## 57         2   1504      RR    STEEL
## 60        36   1730 HIGHWAY    STEEL
## 61        49   1620      RR    STEEL
## 62        43   1652 HIGHWAY    STEEL
## 64        10   2210      RR    STEEL
## 65        41   2822      RR    STEEL
## 67        37   2300      RR    STEEL
## 68        31   2122      RR    STEEL
## 71        32   2365 HIGHWAY    STEEL
## 74        46   1770 HIGHWAY    STEEL
## 75        38   1508 HIGHWAY    STEEL
## 76         5   2663 HIGHWAY    STEEL
## 78        30   2678 HIGHWAY    STEEL
## 79        20   2220 HIGHWAY    STEEL
## 81        17   2250 HIGHWAY    STEEL
## 85        11   1690 HIGHWAY    STEEL
## 86        34   1800 HIGHWAY    STEEL
## 89      38.5   1710 HIGHWAY    STEEL
## 90        48   2160 HIGHWAY    STEEL
## 95        14   2423 HIGHWAY    STEEL
## 97        37   2300 HIGHWAY    STEEL
## 99        47   1700 HIGHWAY    STEEL
## 102        9   2213 HIGHWAY    STEEL
## 104       44   3756 HIGHWAY    STEEL