This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.


vec.name<-c("김지훈","이유진","박동현","김민지") 
vec.eng<-c(90,80,70,60)
vec.math<-c(50,60,200,30)
vec.class<-c(1,1,2,2)
df.score<-cbind.data.frame(vec.name,vec.eng,vec.math,vec.class) #앞에cbin:컬럼을 연결해라
df.score

id<-c(1:6)
class<-c(1,1,1,1,2,2)
math<-c(50,60,45,30,25,50)
eng<-c(50,60,45,30,25,50)
sci<-c(50,60,45,30,25,50)
score<-data.frame(id,class,math,eng,sci)
score

#전체학생 점수 데이터 보기-score입력(내가 정의한 데이터 프레임 이름)
#n번째 row까지만 보여주기 -head(df,n)
head(score,5)
#밑에서 n번째 row까지만 보여주기- tail(df,n)
tail(score,2)
#뷰어창에서 df확인 View(df) **V는 대문자

#df row&column count
dim(score)

#속성 파악하기 str
str(score)

#summary()요약
summary(score)

#package
#install.packages("ggplot2")  #전체 풀젝으로 불러오는 것
#library(ggplot2)  #이 파일로 불러오는 것

mpg<-as.data.frame(ggplot2::mpg)
head(mpg,3)
tail(mpg)
str(mpg)
summary(mpg)




#변수명 바꾸기 dplyr패키지의 rename 
#install.packages("dplyr")
#library(dplyr)

#score<-rename(score,id=아이디....)
library(data.table)
library(dplyr)
score
score %>%  #파이프 라인(ctrl+shift+m)---무슨뜻??: '내부에 있는' 이라는 뜻
data.table::setnames(old="class",new="클래스")
score
#data.table::setnames(old="class",new="클래스")#???안됨
score
score$total<-score$math+score$eng+score$sci
score
score$mean<-score$total/3
score
hist(score$mean)
hist(score$total)

#ifelse()조건문
# ifelse(score$mean>=50,"pass","fail")
score$test<-ifelse(score$mean>=50,"pass","fail")
table(score$test)
library(ggplot2)
ggplot2::qplot(score$test)#ggplot::이건 가독성 높이기 위해서 해주는거. 이 함수가 어느 패키지에서 나왔는지

score$등급<-ifelse(score$mean>=50,"A",ifelse(score$mean>=30,"B","C"))
score
table(score$등)  


###mpg데이터 직접 적용 해보기
library(ggplot2)
mpg<-as.data.frame(ggplot2::mpg)
head(mpg)                 
tail(mpg)
str(mpg)
summary(mpg)

#숫자변수--여섯가지 통계량/문자--값의 개수와 변수의 속성
# 
# manufacturer          model          
# Length:234         Length:234        
# Class :character   Class :character  
# Mode  :character   Mode  :character  
# 
# 
# 
# displ            year           cyl       
# Min.   :1.600   Min.   :1999   Min.   :4.000  
# 1st Qu.:2.400   1st Qu.:1999   1st Qu.:4.000  
# Median :3.300   Median :2004   Median :6.000  
# Mean   :3.472   Mean   :2004   Mean   :5.889  
# 3rd Qu.:4.600   3rd Qu.:2008   3rd Qu.:8.000  
# Max.   :7.000   Max.   :2008   Max.   :8.000  
# trans               drv           
# Length:234         Length:234        
# Class :character   Class :character  
# Mode  :character   Mode  :character  
# 
# 
# 
# cty             hwy             fl           
# Min.   : 9.00   Min.   :12.00   Length:234        
# 1st Qu.:14.00   1st Qu.:18.00   Class :character  
# Median :17.00   Median :24.00   Mode  :character  
# Mean   :16.86   Mean   :23.44                     
# 3rd Qu.:19.00   3rd Qu.:27.00                     
# Max.   :35.00   Max.   :44.00                     
# class          
# Length:234        
# Class :character  
# Mode  :character  
library(data.table)
library(dbplyr)
mpg
mpg %>% #여기서부터 에러
data.table::setnames(old="manufacturer",new="제조사")
df<-data.frame(mpg$제조사,mpg$year)
df$year<-year
df$mean<-mean(year)

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiANCg0KVHJ5IGV4ZWN1dGluZyB0aGlzIGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqUnVuKiBidXR0b24gd2l0aGluIHRoZSBjaHVuayBvciBieSBwbGFjaW5nIHlvdXIgY3Vyc29yIGluc2lkZSBpdCBhbmQgcHJlc3NpbmcgKkN0cmwrU2hpZnQrRW50ZXIqLiANCg0KYGBge3J9DQoNCnZlYy5uYW1lPC1jKCLquYDsp4Dtm4giLCLsnbTsnKDsp4QiLCLrsJXrj5ntmIQiLCLquYDrr7zsp4AiKSANCnZlYy5lbmc8LWMoOTAsODAsNzAsNjApDQp2ZWMubWF0aDwtYyg1MCw2MCwyMDAsMzApDQp2ZWMuY2xhc3M8LWMoMSwxLDIsMikNCmRmLnNjb3JlPC1jYmluZC5kYXRhLmZyYW1lKHZlYy5uYW1lLHZlYy5lbmcsdmVjLm1hdGgsdmVjLmNsYXNzKSAj7JWe7JeQY2Jpbjrsu6zrn7zsnYQg7Jew6rKw7ZW06528DQpkZi5zY29yZQ0KDQppZDwtYygxOjYpDQpjbGFzczwtYygxLDEsMSwxLDIsMikNCm1hdGg8LWMoNTAsNjAsNDUsMzAsMjUsNTApDQplbmc8LWMoNTAsNjAsNDUsMzAsMjUsNTApDQpzY2k8LWMoNTAsNjAsNDUsMzAsMjUsNTApDQpzY29yZTwtZGF0YS5mcmFtZShpZCxjbGFzcyxtYXRoLGVuZyxzY2kpDQpzY29yZQ0KDQoj7KCE7LK07ZWZ7IOdIOygkOyImCDrjbDsnbTthLAg67O06riwLXNjb3Jl7J6F66ClKOuCtOqwgCDsoJXsnZjtlZwg642w7J207YSwIO2UhOugiOyehCDsnbTrpoQpDQojbuuyiOynuCByb3fquYzsp4Drp4wg67O07Jes7KO86riwIC1oZWFkKGRmLG4pDQpoZWFkKHNjb3JlLDUpDQoj67CR7JeQ7IScIG7rsojsp7ggcm936rmM7KeA66eMIOuztOyXrOyjvOq4sC0gdGFpbChkZixuKQ0KdGFpbChzY29yZSwyKQ0KI+u3sOyWtOywveyXkOyEnCBkZu2ZleyduCBWaWV3KGRmKSAqKlbripQg64yA66y47J6QDQoNCiNkZiByb3cmY29sdW1uIGNvdW50DQpkaW0oc2NvcmUpDQoNCiPsho3shLEg7YyM7JWF7ZWY6riwIHN0cg0Kc3RyKHNjb3JlKQ0KDQojc3VtbWFyeSgp7JqU7JW9DQpzdW1tYXJ5KHNjb3JlKQ0KDQojcGFja2FnZQ0KI2luc3RhbGwucGFja2FnZXMoImdncGxvdDIiKSAgI+yghOyytCDtkoDsoJ3snLzroZwg67aI65+s7Jik64qUIOqygw0KI2xpYnJhcnkoZ2dwbG90MikgICPsnbQg7YyM7J2866GcIOu2iOufrOyYpOuKlCDqsoMNCg0KbXBnPC1hcy5kYXRhLmZyYW1lKGdncGxvdDI6Om1wZykNCmhlYWQobXBnLDMpDQp0YWlsKG1wZykNCnN0cihtcGcpDQpzdW1tYXJ5KG1wZykNCg0KDQoNCg0KI+uzgOyImOuqhSDrsJTqvrjquLAgZHBseXLtjKjtgqTsp4DsnZggcmVuYW1lIA0KI2luc3RhbGwucGFja2FnZXMoImRwbHlyIikNCiNsaWJyYXJ5KGRwbHlyKQ0KDQojc2NvcmU8LXJlbmFtZShzY29yZSxpZD3slYTsnbTrlJQuLi4uKQ0KbGlicmFyeShkYXRhLnRhYmxlKQ0KbGlicmFyeShkcGx5cikNCnNjb3JlDQpzY29yZSAlPiUgICPtjIzsnbTtlIQg65287J24KGN0cmwrc2hpZnQrbSktLS3rrLTsiqjrnLs/PzogJ+uCtOu2gOyXkCDsnojripQnIOydtOudvOuKlCDrnLsNCmRhdGEudGFibGU6OnNldG5hbWVzKG9sZD0iY2xhc3MiLG5ldz0i7YG0656Y7IqkIikNCnNjb3JlDQojZGF0YS50YWJsZTo6c2V0bmFtZXMob2xkPSJjbGFzcyIsbmV3PSLtgbTrnpjsiqQiKSM/Pz/slYjrkKgNCnNjb3JlDQpzY29yZSR0b3RhbDwtc2NvcmUkbWF0aCtzY29yZSRlbmcrc2NvcmUkc2NpDQpzY29yZQ0Kc2NvcmUkbWVhbjwtc2NvcmUkdG90YWwvMw0Kc2NvcmUNCmhpc3Qoc2NvcmUkbWVhbikNCmhpc3Qoc2NvcmUkdG90YWwpDQoNCiNpZmVsc2UoKeyhsOqxtOusuA0KIyBpZmVsc2Uoc2NvcmUkbWVhbj49NTAsInBhc3MiLCJmYWlsIikNCnNjb3JlJHRlc3Q8LWlmZWxzZShzY29yZSRtZWFuPj01MCwicGFzcyIsImZhaWwiKQ0KdGFibGUoc2NvcmUkdGVzdCkNCmxpYnJhcnkoZ2dwbG90MikNCmdncGxvdDI6OnFwbG90KHNjb3JlJHRlc3QpI2dncGxvdDo67J206rG0IOqwgOuPheyEsSDrhpLsnbTquLAg7JyE7ZW07IScIO2VtOyjvOuKlOqxsC4g7J20IO2VqOyImOqwgCDslrTripAg7Yyo7YKk7KeA7JeQ7IScIOuCmOyZlOuKlOyngA0KDQpzY29yZSTrk7HquIk8LWlmZWxzZShzY29yZSRtZWFuPj01MCwiQSIsaWZlbHNlKHNjb3JlJG1lYW4+PTMwLCJCIiwiQyIpKQ0Kc2NvcmUNCnRhYmxlKHNjb3JlJOuTsSkgIA0KDQoNCiMjI21wZ+uNsOydtO2EsCDsp4HsoJEg7KCB7JqpIO2VtOuztOq4sA0KbGlicmFyeShnZ3Bsb3QyKQ0KbXBnPC1hcy5kYXRhLmZyYW1lKGdncGxvdDI6Om1wZykNCmhlYWQobXBnKSAgICAgICAgICAgICAgICAgDQp0YWlsKG1wZykNCnN0cihtcGcpDQpzdW1tYXJ5KG1wZykNCg0KI+yIq+yekOuzgOyImC0t7Jes7ISv6rCA7KeAIO2GteqzhOufiS/rrLjsnpAtLeqwkuydmCDqsJzsiJjsmYAg67OA7IiY7J2YIOyGjeyEsQ0KIyANCiMgbWFudWZhY3R1cmVyICAgICAgICAgIG1vZGVsICAgICAgICAgIA0KIyBMZW5ndGg6MjM0ICAgICAgICAgTGVuZ3RoOjIzNCAgICAgICAgDQojIENsYXNzIDpjaGFyYWN0ZXIgICBDbGFzcyA6Y2hhcmFjdGVyICANCiMgTW9kZSAgOmNoYXJhY3RlciAgIE1vZGUgIDpjaGFyYWN0ZXIgIA0KIyANCiMgDQojIA0KIyBkaXNwbCAgICAgICAgICAgIHllYXIgICAgICAgICAgIGN5bCAgICAgICANCiMgTWluLiAgIDoxLjYwMCAgIE1pbi4gICA6MTk5OSAgIE1pbi4gICA6NC4wMDAgIA0KIyAxc3QgUXUuOjIuNDAwICAgMXN0IFF1LjoxOTk5ICAgMXN0IFF1Ljo0LjAwMCAgDQojIE1lZGlhbiA6My4zMDAgICBNZWRpYW4gOjIwMDQgICBNZWRpYW4gOjYuMDAwICANCiMgTWVhbiAgIDozLjQ3MiAgIE1lYW4gICA6MjAwNCAgIE1lYW4gICA6NS44ODkgIA0KIyAzcmQgUXUuOjQuNjAwICAgM3JkIFF1LjoyMDA4ICAgM3JkIFF1Ljo4LjAwMCAgDQojIE1heC4gICA6Ny4wMDAgICBNYXguICAgOjIwMDggICBNYXguICAgOjguMDAwICANCiMgdHJhbnMgICAgICAgICAgICAgICBkcnYgICAgICAgICAgIA0KIyBMZW5ndGg6MjM0ICAgICAgICAgTGVuZ3RoOjIzNCAgICAgICAgDQojIENsYXNzIDpjaGFyYWN0ZXIgICBDbGFzcyA6Y2hhcmFjdGVyICANCiMgTW9kZSAgOmNoYXJhY3RlciAgIE1vZGUgIDpjaGFyYWN0ZXIgIA0KIyANCiMgDQojIA0KIyBjdHkgICAgICAgICAgICAgaHd5ICAgICAgICAgICAgIGZsICAgICAgICAgICANCiMgTWluLiAgIDogOS4wMCAgIE1pbi4gICA6MTIuMDAgICBMZW5ndGg6MjM0ICAgICAgICANCiMgMXN0IFF1LjoxNC4wMCAgIDFzdCBRdS46MTguMDAgICBDbGFzcyA6Y2hhcmFjdGVyICANCiMgTWVkaWFuIDoxNy4wMCAgIE1lZGlhbiA6MjQuMDAgICBNb2RlICA6Y2hhcmFjdGVyICANCiMgTWVhbiAgIDoxNi44NiAgIE1lYW4gICA6MjMuNDQgICAgICAgICAgICAgICAgICAgICANCiMgM3JkIFF1LjoxOS4wMCAgIDNyZCBRdS46MjcuMDAgICAgICAgICAgICAgICAgICAgICANCiMgTWF4LiAgIDozNS4wMCAgIE1heC4gICA6NDQuMDAgICAgICAgICAgICAgICAgICAgICANCiMgY2xhc3MgICAgICAgICAgDQojIExlbmd0aDoyMzQgICAgICAgIA0KIyBDbGFzcyA6Y2hhcmFjdGVyICANCiMgTW9kZSAgOmNoYXJhY3RlciAgDQpsaWJyYXJ5KGRhdGEudGFibGUpDQpsaWJyYXJ5KGRicGx5cikNCm1wZw0KbXBnICU+JSAj7Jes6riw7ISc67aA7YSwIOyXkOufrA0KZGF0YS50YWJsZTo6c2V0bmFtZXMob2xkPSJtYW51ZmFjdHVyZXIiLG5ldz0i7KCc7KGw7IKsIikNCmRmPC1kYXRhLmZyYW1lKG1wZyTsoJzsobDsgqwsbXBnJHllYXIpDQpkZiR5ZWFyPC15ZWFyDQpkZiRtZWFuPC1tZWFuKHllYXIpDQpgYGANCg0KQWRkIGEgbmV3IGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqSW5zZXJ0IENodW5rKiBidXR0b24gb24gdGhlIHRvb2xiYXIgb3IgYnkgcHJlc3NpbmcgKkN0cmwrQWx0K0kqLg0KDQpXaGVuIHlvdSBzYXZlIHRoZSBub3RlYm9vaywgYW4gSFRNTCBmaWxlIGNvbnRhaW5pbmcgdGhlIGNvZGUgYW5kIG91dHB1dCB3aWxsIGJlIHNhdmVkIGFsb25nc2lkZSBpdCAoY2xpY2sgdGhlICpQcmV2aWV3KiBidXR0b24gb3IgcHJlc3MgKkN0cmwrU2hpZnQrSyogdG8gcHJldmlldyB0aGUgSFRNTCBmaWxlKS4NCg0KVGhlIHByZXZpZXcgc2hvd3MgeW91IGEgcmVuZGVyZWQgSFRNTCBjb3B5IG9mIHRoZSBjb250ZW50cyBvZiB0aGUgZWRpdG9yLiBDb25zZXF1ZW50bHksIHVubGlrZSAqS25pdCosICpQcmV2aWV3KiBkb2VzIG5vdCBydW4gYW55IFIgY29kZSBjaHVua3MuIEluc3RlYWQsIHRoZSBvdXRwdXQgb2YgdGhlIGNodW5rIHdoZW4gaXQgd2FzIGxhc3QgcnVuIGluIHRoZSBlZGl0b3IgaXMgZGlzcGxheWVkLg0K