ggplot2 에 내장된 샘플데이터 mpg 정형화



# package
library(ggplot2) # 이 파일로 불러오는 것 
df.mpg <- as.data.frame(ggplot2::mpg)

## 4함수 :: headm tail, str, summary
head(df.mpg)
tail(df.mpg)
str(df.mpg)
summary(df.mpg)


# 'data.frame': 234 obs. of  11 variables:
#  $ manufacturer(제조회사): chr  "audi" "audi" "audi" "audi" ...
#  $ model(모델)       : chr  "a4" "a4" "a4" "a4" ...
#  $ displ(배기량)       : num  1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
#  $ year(생산연도)        : int  1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...
#  $ cyl(실린더 개수)         : int  4 4 4 4 6 6 6 4 4 4 ...
#  $ trans(변속기 종류)       : chr  "auto(l5)" "manual(m5)" "manual(m6)" "auto(av)" ...
#  $ drv(구동 방식)         : chr  "f" "f" "f" "f" ...
#  $ cty(도시 연비)         : int  18 21 20 21 16 18 18 18 16 20 ...
#  $ hwy(고속도로 연비)         : int  29 29 31 30 26 26 27 26 25 28 ...
#  $ fl(연료 종류)          : chr  "p" "p" "p" "p" ...
#  $ class(자동차 종류)       : chr  "compact" "compact" "compact" "compact" ...

# > summary(df.mpg)
#  manufacturer          model               displ            year     
#  Length:234         Length:234         Min.   :1.600   Min.   :1999  
#  Class :character   Class :character   1st Qu.:2.400   1st Qu.:1999  
#  Mode  :character   Mode  :character   Median :3.300   Median :2004  
#                                        Mean   :3.472   Mean   :2004  
#                                        3rd Qu.:4.600   3rd Qu.:2008  
#                                        Max.   :7.000   Max.   :2008  
#       cyl           trans               drv                 cty       
#  Min.   :4.000   Length:234         Length:234         Min.   : 9.00  
#  1st Qu.:4.000   Class :character   Class :character   1st Qu.:14.00  
#  Median :6.000   Mode  :character   Mode  :character   Median :17.00  
#  Mean   :5.889                                         Mean   :16.86  
#  3rd Qu.:8.000                                         3rd Qu.:19.00  
#  Max.   :8.000                                         Max.   :35.00  
#       hwy             fl               class          
#  Min.   :12.00   Length:234         Length:234        
#  1st Qu.:18.00   Class :character   Class :character  
#  Median :24.00   Mode  :character   Mode  :character  
#  Mean   :23.44                                        
#  3rd Qu.:27.00                                        
#  Max.   :44.00                       


library(ggplot2)
midwest <- as.data.frame(ggplot2::midwest)

head(midwest)


library(dplyr)
df.midwest %>% 
  data.table::setnames(old = "popasian", new = "asian")
df.midwest

midwest$ratio <- midwest$asian/midwest$total*100
hist(midwest$ratio)

mean(midwest$ratio)

midwest$group <- ifelse(midwest$ratio > 0.4872462, "large", "small")


table(midwest$group)

library(ggplot2)
qplot(midwest$group)
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpnZ3Bsb3QyIOyXkCDrgrTsnqXrkJwg7IOY7ZSM642w7J207YSwIG1wZyDsoJXtmJXtmZQNCg0KYGBge3J9DQoNCg0KIyBwYWNrYWdlDQpsaWJyYXJ5KGdncGxvdDIpICMg7J20IO2MjOydvOuhnCDrtojrn6zsmKTripQg6rKDIA0KZGYubXBnIDwtIGFzLmRhdGEuZnJhbWUoZ2dwbG90Mjo6bXBnKQ0KDQojIyA07ZWo7IiYIDo6IGhlYWRtIHRhaWwsIHN0ciwgc3VtbWFyeQ0KaGVhZChkZi5tcGcpDQp0YWlsKGRmLm1wZykNCnN0cihkZi5tcGcpDQpzdW1tYXJ5KGRmLm1wZykNCg0KDQojICdkYXRhLmZyYW1lJzoJMjM0IG9icy4gb2YgIDExIHZhcmlhYmxlczoNCiMgICQgbWFudWZhY3R1cmVyKOygnOyhsO2ajOyCrCk6IGNociAgImF1ZGkiICJhdWRpIiAiYXVkaSIgImF1ZGkiIC4uLg0KIyAgJCBtb2RlbCjrqqjrjbgpICAgICAgIDogY2hyICAiYTQiICJhNCIgImE0IiAiYTQiIC4uLg0KIyAgJCBkaXNwbCjrsLDquLDrn4kpICAgICAgIDogbnVtICAxLjggMS44IDIgMiAyLjggMi44IDMuMSAxLjggMS44IDIgLi4uDQojICAkIHllYXIo7IOd7IKw7Jew64+EKSAgICAgICAgOiBpbnQgIDE5OTkgMTk5OSAyMDA4IDIwMDggMTk5OSAxOTk5IDIwMDggMTk5OSAxOTk5IDIwMDggLi4uDQojICAkIGN5bCjsi6TrprDrjZQg6rCc7IiYKSAgICAgICAgIDogaW50ICA0IDQgNCA0IDYgNiA2IDQgNCA0IC4uLg0KIyAgJCB0cmFucyjrs4Dsho3quLAg7KKF66WYKSAgICAgICA6IGNociAgImF1dG8obDUpIiAibWFudWFsKG01KSIgIm1hbnVhbChtNikiICJhdXRvKGF2KSIgLi4uDQojICAkIGRydijqtazrj5kg67Cp7IudKSAgICAgICAgIDogY2hyICAiZiIgImYiICJmIiAiZiIgLi4uDQojICAkIGN0eSjrj4Tsi5wg7Jew67mEKSAgICAgICAgIDogaW50ICAxOCAyMSAyMCAyMSAxNiAxOCAxOCAxOCAxNiAyMCAuLi4NCiMgICQgaHd5KOqzoOyGjeuPhOuhnCDsl7DruYQpICAgICAgICAgOiBpbnQgIDI5IDI5IDMxIDMwIDI2IDI2IDI3IDI2IDI1IDI4IC4uLg0KIyAgJCBmbCjsl7Dro4wg7KKF66WYKSAgICAgICAgICA6IGNociAgInAiICJwIiAicCIgInAiIC4uLg0KIyAgJCBjbGFzcyjsnpDrj5nssKgg7KKF66WYKSAgICAgICA6IGNociAgImNvbXBhY3QiICJjb21wYWN0IiAiY29tcGFjdCIgImNvbXBhY3QiIC4uLg0KDQojID4gc3VtbWFyeShkZi5tcGcpDQojICBtYW51ZmFjdHVyZXIgICAgICAgICAgbW9kZWwgICAgICAgICAgICAgICBkaXNwbCAgICAgICAgICAgIHllYXIgICAgIA0KIyAgTGVuZ3RoOjIzNCAgICAgICAgIExlbmd0aDoyMzQgICAgICAgICBNaW4uICAgOjEuNjAwICAgTWluLiAgIDoxOTk5ICANCiMgIENsYXNzIDpjaGFyYWN0ZXIgICBDbGFzcyA6Y2hhcmFjdGVyICAgMXN0IFF1LjoyLjQwMCAgIDFzdCBRdS46MTk5OSAgDQojICBNb2RlICA6Y2hhcmFjdGVyICAgTW9kZSAgOmNoYXJhY3RlciAgIE1lZGlhbiA6My4zMDAgICBNZWRpYW4gOjIwMDQgIA0KIyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBNZWFuICAgOjMuNDcyICAgTWVhbiAgIDoyMDA0ICANCiMgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgM3JkIFF1Ljo0LjYwMCAgIDNyZCBRdS46MjAwOCAgDQojICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE1heC4gICA6Ny4wMDAgICBNYXguICAgOjIwMDggIA0KIyAgICAgICBjeWwgICAgICAgICAgIHRyYW5zICAgICAgICAgICAgICAgZHJ2ICAgICAgICAgICAgICAgICBjdHkgICAgICAgDQojICBNaW4uICAgOjQuMDAwICAgTGVuZ3RoOjIzNCAgICAgICAgIExlbmd0aDoyMzQgICAgICAgICBNaW4uICAgOiA5LjAwICANCiMgIDFzdCBRdS46NC4wMDAgICBDbGFzcyA6Y2hhcmFjdGVyICAgQ2xhc3MgOmNoYXJhY3RlciAgIDFzdCBRdS46MTQuMDAgIA0KIyAgTWVkaWFuIDo2LjAwMCAgIE1vZGUgIDpjaGFyYWN0ZXIgICBNb2RlICA6Y2hhcmFjdGVyICAgTWVkaWFuIDoxNy4wMCAgDQojICBNZWFuICAgOjUuODg5ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBNZWFuICAgOjE2Ljg2ICANCiMgIDNyZCBRdS46OC4wMDAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDNyZCBRdS46MTkuMDAgIA0KIyAgTWF4LiAgIDo4LjAwMCAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTWF4LiAgIDozNS4wMCAgDQojICAgICAgIGh3eSAgICAgICAgICAgICBmbCAgICAgICAgICAgICAgIGNsYXNzICAgICAgICAgIA0KIyAgTWluLiAgIDoxMi4wMCAgIExlbmd0aDoyMzQgICAgICAgICBMZW5ndGg6MjM0ICAgICAgICANCiMgIDFzdCBRdS46MTguMDAgICBDbGFzcyA6Y2hhcmFjdGVyICAgQ2xhc3MgOmNoYXJhY3RlciAgDQojICBNZWRpYW4gOjI0LjAwICAgTW9kZSAgOmNoYXJhY3RlciAgIE1vZGUgIDpjaGFyYWN0ZXIgIA0KIyAgTWVhbiAgIDoyMy40NCAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICANCiMgIDNyZCBRdS46MjcuMDAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgDQojICBNYXguICAgOjQ0LjAwICAgICAgICAgICAgICAgICAgICAgICANCg0KDQpsaWJyYXJ5KGdncGxvdDIpDQptaWR3ZXN0IDwtIGFzLmRhdGEuZnJhbWUoZ2dwbG90Mjo6bWlkd2VzdCkNCg0KaGVhZChtaWR3ZXN0KQ0KDQoNCmxpYnJhcnkoZHBseXIpDQpkZi5taWR3ZXN0ICU+JSANCiAgZGF0YS50YWJsZTo6c2V0bmFtZXMob2xkID0gInBvcGFzaWFuIiwgbmV3ID0gImFzaWFuIikNCmRmLm1pZHdlc3QNCg0KbWlkd2VzdCRyYXRpbyA8LSBtaWR3ZXN0JGFzaWFuL21pZHdlc3QkdG90YWwqMTAwDQpoaXN0KG1pZHdlc3QkcmF0aW8pDQoNCm1lYW4obWlkd2VzdCRyYXRpbykNCg0KbWlkd2VzdCRncm91cCA8LSBpZmVsc2UobWlkd2VzdCRyYXRpbyA+IDAuNDg3MjQ2MiwgImxhcmdlIiwgInNtYWxsIikNCg0KDQp0YWJsZShtaWR3ZXN0JGdyb3VwKQ0KDQpsaWJyYXJ5KGdncGxvdDIpDQpxcGxvdChtaWR3ZXN0JGdyb3VwKQ0KDQoNCmBgYA0K