ggplot2 에 내장된 샘플데이터 mpg 정형화
# package
library(ggplot2) # 이 파일로 불러오는 것
df.mpg <- as.data.frame(ggplot2::mpg)
## 4함수 :: headm tail, str, summary
head(df.mpg)
tail(df.mpg)
str(df.mpg)
summary(df.mpg)
# 'data.frame': 234 obs. of 11 variables:
# $ manufacturer(제조회사): chr "audi" "audi" "audi" "audi" ...
# $ model(모델) : chr "a4" "a4" "a4" "a4" ...
# $ displ(배기량) : num 1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
# $ year(생산연도) : int 1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...
# $ cyl(실린더 개수) : int 4 4 4 4 6 6 6 4 4 4 ...
# $ trans(변속기 종류) : chr "auto(l5)" "manual(m5)" "manual(m6)" "auto(av)" ...
# $ drv(구동 방식) : chr "f" "f" "f" "f" ...
# $ cty(도시 연비) : int 18 21 20 21 16 18 18 18 16 20 ...
# $ hwy(고속도로 연비) : int 29 29 31 30 26 26 27 26 25 28 ...
# $ fl(연료 종류) : chr "p" "p" "p" "p" ...
# $ class(자동차 종류) : chr "compact" "compact" "compact" "compact" ...
# > summary(df.mpg)
# manufacturer model displ year
# Length:234 Length:234 Min. :1.600 Min. :1999
# Class :character Class :character 1st Qu.:2.400 1st Qu.:1999
# Mode :character Mode :character Median :3.300 Median :2004
# Mean :3.472 Mean :2004
# 3rd Qu.:4.600 3rd Qu.:2008
# Max. :7.000 Max. :2008
# cyl trans drv cty
# Min. :4.000 Length:234 Length:234 Min. : 9.00
# 1st Qu.:4.000 Class :character Class :character 1st Qu.:14.00
# Median :6.000 Mode :character Mode :character Median :17.00
# Mean :5.889 Mean :16.86
# 3rd Qu.:8.000 3rd Qu.:19.00
# Max. :8.000 Max. :35.00
# hwy fl class
# Min. :12.00 Length:234 Length:234
# 1st Qu.:18.00 Class :character Class :character
# Median :24.00 Mode :character Mode :character
# Mean :23.44
# 3rd Qu.:27.00
# Max. :44.00
library(ggplot2)
midwest <- as.data.frame(ggplot2::midwest)
head(midwest)
library(dplyr)
df.midwest %>%
data.table::setnames(old = "popasian", new = "asian")
df.midwest
midwest$ratio <- midwest$asian/midwest$total*100
hist(midwest$ratio)
mean(midwest$ratio)
midwest$group <- ifelse(midwest$ratio > 0.4872462, "large", "small")
table(midwest$group)
library(ggplot2)
qplot(midwest$group)
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpnZ3Bsb3QyIOyXkCDrgrTsnqXrkJwg7IOY7ZSM642w7J207YSwIG1wZyDsoJXtmJXtmZQNCg0KYGBge3J9DQoNCg0KIyBwYWNrYWdlDQpsaWJyYXJ5KGdncGxvdDIpICMg7J20IO2MjOydvOuhnCDrtojrn6zsmKTripQg6rKDIA0KZGYubXBnIDwtIGFzLmRhdGEuZnJhbWUoZ2dwbG90Mjo6bXBnKQ0KDQojIyA07ZWo7IiYIDo6IGhlYWRtIHRhaWwsIHN0ciwgc3VtbWFyeQ0KaGVhZChkZi5tcGcpDQp0YWlsKGRmLm1wZykNCnN0cihkZi5tcGcpDQpzdW1tYXJ5KGRmLm1wZykNCg0KDQojICdkYXRhLmZyYW1lJzoJMjM0IG9icy4gb2YgIDExIHZhcmlhYmxlczoNCiMgICQgbWFudWZhY3R1cmVyKOygnOyhsO2ajOyCrCk6IGNociAgImF1ZGkiICJhdWRpIiAiYXVkaSIgImF1ZGkiIC4uLg0KIyAgJCBtb2RlbCjrqqjrjbgpICAgICAgIDogY2hyICAiYTQiICJhNCIgImE0IiAiYTQiIC4uLg0KIyAgJCBkaXNwbCjrsLDquLDrn4kpICAgICAgIDogbnVtICAxLjggMS44IDIgMiAyLjggMi44IDMuMSAxLjggMS44IDIgLi4uDQojICAkIHllYXIo7IOd7IKw7Jew64+EKSAgICAgICAgOiBpbnQgIDE5OTkgMTk5OSAyMDA4IDIwMDggMTk5OSAxOTk5IDIwMDggMTk5OSAxOTk5IDIwMDggLi4uDQojICAkIGN5bCjsi6TrprDrjZQg6rCc7IiYKSAgICAgICAgIDogaW50ICA0IDQgNCA0IDYgNiA2IDQgNCA0IC4uLg0KIyAgJCB0cmFucyjrs4Dsho3quLAg7KKF66WYKSAgICAgICA6IGNociAgImF1dG8obDUpIiAibWFudWFsKG01KSIgIm1hbnVhbChtNikiICJhdXRvKGF2KSIgLi4uDQojICAkIGRydijqtazrj5kg67Cp7IudKSAgICAgICAgIDogY2hyICAiZiIgImYiICJmIiAiZiIgLi4uDQojICAkIGN0eSjrj4Tsi5wg7Jew67mEKSAgICAgICAgIDogaW50ICAxOCAyMSAyMCAyMSAxNiAxOCAxOCAxOCAxNiAyMCAuLi4NCiMgICQgaHd5KOqzoOyGjeuPhOuhnCDsl7DruYQpICAgICAgICAgOiBpbnQgIDI5IDI5IDMxIDMwIDI2IDI2IDI3IDI2IDI1IDI4IC4uLg0KIyAgJCBmbCjsl7Dro4wg7KKF66WYKSAgICAgICAgICA6IGNociAgInAiICJwIiAicCIgInAiIC4uLg0KIyAgJCBjbGFzcyjsnpDrj5nssKgg7KKF66WYKSAgICAgICA6IGNociAgImNvbXBhY3QiICJjb21wYWN0IiAiY29tcGFjdCIgImNvbXBhY3QiIC4uLg0KDQojID4gc3VtbWFyeShkZi5tcGcpDQojICBtYW51ZmFjdHVyZXIgICAgICAgICAgbW9kZWwgICAgICAgICAgICAgICBkaXNwbCAgICAgICAgICAgIHllYXIgICAgIA0KIyAgTGVuZ3RoOjIzNCAgICAgICAgIExlbmd0aDoyMzQgICAgICAgICBNaW4uICAgOjEuNjAwICAgTWluLiAgIDoxOTk5ICANCiMgIENsYXNzIDpjaGFyYWN0ZXIgICBDbGFzcyA6Y2hhcmFjdGVyICAgMXN0IFF1LjoyLjQwMCAgIDFzdCBRdS46MTk5OSAgDQojICBNb2RlICA6Y2hhcmFjdGVyICAgTW9kZSAgOmNoYXJhY3RlciAgIE1lZGlhbiA6My4zMDAgICBNZWRpYW4gOjIwMDQgIA0KIyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBNZWFuICAgOjMuNDcyICAgTWVhbiAgIDoyMDA0ICANCiMgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgM3JkIFF1Ljo0LjYwMCAgIDNyZCBRdS46MjAwOCAgDQojICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE1heC4gICA6Ny4wMDAgICBNYXguICAgOjIwMDggIA0KIyAgICAgICBjeWwgICAgICAgICAgIHRyYW5zICAgICAgICAgICAgICAgZHJ2ICAgICAgICAgICAgICAgICBjdHkgICAgICAgDQojICBNaW4uICAgOjQuMDAwICAgTGVuZ3RoOjIzNCAgICAgICAgIExlbmd0aDoyMzQgICAgICAgICBNaW4uICAgOiA5LjAwICANCiMgIDFzdCBRdS46NC4wMDAgICBDbGFzcyA6Y2hhcmFjdGVyICAgQ2xhc3MgOmNoYXJhY3RlciAgIDFzdCBRdS46MTQuMDAgIA0KIyAgTWVkaWFuIDo2LjAwMCAgIE1vZGUgIDpjaGFyYWN0ZXIgICBNb2RlICA6Y2hhcmFjdGVyICAgTWVkaWFuIDoxNy4wMCAgDQojICBNZWFuICAgOjUuODg5ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBNZWFuICAgOjE2Ljg2ICANCiMgIDNyZCBRdS46OC4wMDAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDNyZCBRdS46MTkuMDAgIA0KIyAgTWF4LiAgIDo4LjAwMCAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTWF4LiAgIDozNS4wMCAgDQojICAgICAgIGh3eSAgICAgICAgICAgICBmbCAgICAgICAgICAgICAgIGNsYXNzICAgICAgICAgIA0KIyAgTWluLiAgIDoxMi4wMCAgIExlbmd0aDoyMzQgICAgICAgICBMZW5ndGg6MjM0ICAgICAgICANCiMgIDFzdCBRdS46MTguMDAgICBDbGFzcyA6Y2hhcmFjdGVyICAgQ2xhc3MgOmNoYXJhY3RlciAgDQojICBNZWRpYW4gOjI0LjAwICAgTW9kZSAgOmNoYXJhY3RlciAgIE1vZGUgIDpjaGFyYWN0ZXIgIA0KIyAgTWVhbiAgIDoyMy40NCAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICANCiMgIDNyZCBRdS46MjcuMDAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgDQojICBNYXguICAgOjQ0LjAwICAgICAgICAgICAgICAgICAgICAgICANCg0KDQpsaWJyYXJ5KGdncGxvdDIpDQptaWR3ZXN0IDwtIGFzLmRhdGEuZnJhbWUoZ2dwbG90Mjo6bWlkd2VzdCkNCg0KaGVhZChtaWR3ZXN0KQ0KDQoNCmxpYnJhcnkoZHBseXIpDQpkZi5taWR3ZXN0ICU+JSANCiAgZGF0YS50YWJsZTo6c2V0bmFtZXMob2xkID0gInBvcGFzaWFuIiwgbmV3ID0gImFzaWFuIikNCmRmLm1pZHdlc3QNCg0KbWlkd2VzdCRyYXRpbyA8LSBtaWR3ZXN0JGFzaWFuL21pZHdlc3QkdG90YWwqMTAwDQpoaXN0KG1pZHdlc3QkcmF0aW8pDQoNCm1lYW4obWlkd2VzdCRyYXRpbykNCg0KbWlkd2VzdCRncm91cCA8LSBpZmVsc2UobWlkd2VzdCRyYXRpbyA+IDAuNDg3MjQ2MiwgImxhcmdlIiwgInNtYWxsIikNCg0KDQp0YWJsZShtaWR3ZXN0JGdyb3VwKQ0KDQpsaWJyYXJ5KGdncGxvdDIpDQpxcGxvdChtaWR3ZXN0JGdyb3VwKQ0KDQoNCmBgYA0K